Tese
Estudo das propriedades estruturais, magnéticas, eletrônicas e ópticas das manganitas multiferróicas LuMnO3 e HoMnO3 via cálculos baseados em non-collinear spin DFT
Registro en:
BRITO, Douglas Meneses Santos. Estudo das propriedades estruturais, magnéticas, eletrônicas e ópticas das manganitas multiferróicas LuMnO3 e HoMnO3 via cálculos baseados em non-collinear spin DFT. 2022. 112 f. Tese (Doutorado em Física) – Universidade Federal de Sergipe, São Cristóvão, 2022.
Autor
Brito, Douglas Meneses Santos
Institución
Resumen
In this work, structural, electronic, magnetic, and optical properties of the hexagonal LuMnO3 and HoMnO3 multiferroic compounds were studied. These materials with P63cm crystallographic space group (ferroelectric phase) gained attention of researchers because of their magnetoelectric coupling below the Néel temperature (TN < 90 K in the case of LuMnO3 and TN < 72 K in the case of HoMnO3). In this condition, these materials can be applied in new technologies in the spintronic field. The present study was carried out through calculations based on Non-collinear Spin Density Functional Theory using the All-electron Full-Potential Linearized Augmented Plane Wave electronic structure method implemented in the Elk computational code. The exchange and correlation electronic effects were considered in the framework of Local Spin Density Approximation including the effective Hubbard (Ueff) correction. The general objective of the thesis work was to contribute to the elucidation of divergent results in the literature on some of the structural, electronic, magnetic and optical properties of LuMnO3 and HoMnO3. For the first time in the literature, the combination of calculation methods described above was applied to investigate the aforementioned properties of LuMnO3 and HoMnO3. In the case of LuMnO3, the results reveal that the P63cm crystallographic space group with the Γ3 + Γ4 magnetic structure (o = 80°) should be the ground state of the material. Based on these results, the electronic band structure, the effective mass tensor of the charge carriers (electrons and holes), density of states, and the dielectric tensor of the material were calculated. The results were compared and discussed with those in the literature. The energy band gap value of 1.2 eV agrees very well with that predicted from optical conductivity measured (1.1 eV). In the case of HoMnO3, the magnetic structure of the ground state was determined and, based on it, the electronic and optical properties were calculated. The HoMnO3 calculations showed that the material has a non-collinear magnetic structure for both Ho3+ and Mn3+ ions sublattices. The magnetic configuration in the Mn3+ ion sublattice agrees with the results predicted by some experimentalists. However, in the case of the Ho3+ ion sublattice, the results are different from those predicted in the literature. The calculated energy band gap was 1.25 eV. This result agrees very well with what was
experimentally predicted (1.4 eV). In addition, the material presents values charge
carriers effective mass similar to LuMnO3. This characteristic of HoMnO3, together
with other fundamental properties similar to that of LuMnO3, allows us to conclude
that HoMnO3 exhibits potential as a photoferroic material. Fundação de Apoio a Pesquisa e à Inovação Tecnológica do Estado de Sergipe - FAPITEC/SE Neste trabalho, foram estudadas as das propriedades estruturais, eletrônicas, magnéticas e ópticas dos compostos hexagonais multiferróicos LuMnO3 e HoMnO3. Esses materiais com grupo espacial cristalográfico P63cm (fase ferroelétrica) têm se destacado na literatura por exibir acoplamento magnetoelétrico abaixo da temperatura de Néel (TN < 90 K no caso do LuMnO3 e TN < 72 K no caso do HoMnO3). Nessa condição, esses materiais podem ser aplicados em novas tecnologias no campo da spintrônica. O presente estudo foi realizado através de cálculos baseados em Non-collinear Spin Density Functional Theory utilizando o método de cálculo de estrutura eletrônica denominado de All-electron Full-potential Linearized Augmented Plane Wave implementado no código computacional Elk. Os efeitos de troca e correlação eletrônica foram considerados usando a Local Spin Density Approximation incluindo correção de Hubbard (Ueff). O objetivo geral do trabalho de tese foi contribuir na elucidação de resultados divergentes na literatura sobre algumas das propriedades estruturais, eletrônicas, magnéticas e ópticas do LuMnO3 e do HoMnO3. Pela primeira vez na literatura foi aplicada a combinação de métodos de cálculos descritos anteriormente para a investigação das referidas propriedades. No caso do LuMnO3, os resultados revelaram que o grupo espacial cristalográfico P63cm com a estrutura magnética do tipo Γ3 + Γ4 (o = 80°) deve representar o estado fundamental do material. Com base nesses resultados, foram calculadas a estrutura de bandas eletrônicas, o tensor massa efetiva dos portadores de carga (elétrons e buracos), densidade de estados e o tensor dielétrico do material. Os resultados foram comparados e discutidos com os existentes na literatura. O valor da energia de band gap de 1,2 eV concorda muito bem com o resultado experimental de medidas de condutividade óptica estimado em 1,1 eV. No caso do HoMnO3 foi determinada a estrutura magnética do estado fundamental e com base nela foram calculadas as propriedades eletrônicas e ópticas. Os cálculos do HoMnO3 mostram que o material apresenta estrutura magnética não colinear para ambos os íons nas sub-redes do Ho3+ e Mn3+. A configuração magnética na sub-rede do íon Mn3+ concorda com os resultados previstos por alguns experimentalistas. Porém, no caso da sub-rede do íon Ho3+, o resultado é diferente daqueles previstos pela literatura. A energia de band gap calculada foi de 1,25 eV. Esse resultado concorda muito bem com o previsto experimentalmente (1,4 eV). Além disso, o material apresenta valores de massa efetiva dos portadores de carga semelhantes ao do LuMnO3. Essa característica do HoMnO3, juntamente com outras propriedades fundamentais semelhantes ao do LuMnO3, permite concluir que o HoMnO3 exibe potencial como material fotoferróico. São Cristóvão
Materias
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.