info:eu-repo/semantics/article
Molecular mechanisms of 33-mer gliadin peptide oligomerisation
Fecha
2019-09-23Registro en:
Amundarain, María Julia; Herrera, Maria Georgina; Zamarreño, Fernando; Viso, Juan Francisco; Costabel, Marcelo Daniel; et al.; Molecular mechanisms of 33-mer gliadin peptide oligomerisation; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 21; 40; 23-9-2019; 22539-22552
1463-9076
CONICET Digital
CONICET
Autor
Amundarain, María Julia
Herrera, Maria Georgina
Zamarreño, Fernando
Viso, Juan Francisco
Costabel, Marcelo Daniel
Dodero, Veronica Isabel
Resumen
The proteolytic resistant 33-mer gliadin peptide is an immunodominant fragment in gluten and responsible for the celiac disease and other gluten-related disorders. Meanwhile, the primary structure of the 33-mer is associated with the adaptive immune response in celiac patients, and the structural transformation of the 33-mer into protofilaments activates a primordial innate immune response in human macrophages. This means that accumulation, oligomerisation and structural transformation of the 33-mer could be the unknown first event that triggers the disease. Herein, we reveal the early stepwise mechanism of 33-mer oligomerisation by combining multiple computational simulations, tyrosine cross-linking, fluorescence spectroscopy and circular dichroism experiments. Our theoretical findings demonstrated that the partial charge distribution along the 33-mer molecule and the presence of glutamine that favours H-bonds between the oligomers are the driving forces that trigger oligomerisation. The high content of proline is critical for the formation of the flexible PPII secondary structure that led to a β structure transition upon oligomerisation. Experimentally, we stabilised the 33-mer small oligomers by dityrosine cross-linking, detecting from dimers to higher molecular weight oligomers, which confirmed our simulations. The relevance of 33-mer oligomers as a trigger of the disease as well as its inhibition may be a novel therapeutic strategy for the treatment of gluten-related disorders.