dc.creatorAmundarain, María Julia
dc.creatorHerrera, Maria Georgina
dc.creatorZamarreño, Fernando
dc.creatorViso, Juan Francisco
dc.creatorCostabel, Marcelo Daniel
dc.creatorDodero, Veronica Isabel
dc.date.accessioned2020-09-30T21:03:29Z
dc.date.accessioned2022-10-15T07:44:43Z
dc.date.available2020-09-30T21:03:29Z
dc.date.available2022-10-15T07:44:43Z
dc.date.created2020-09-30T21:03:29Z
dc.date.issued2019-09-23
dc.identifierAmundarain, María Julia; Herrera, Maria Georgina; Zamarreño, Fernando; Viso, Juan Francisco; Costabel, Marcelo Daniel; et al.; Molecular mechanisms of 33-mer gliadin peptide oligomerisation; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 21; 40; 23-9-2019; 22539-22552
dc.identifier1463-9076
dc.identifierhttp://hdl.handle.net/11336/115222
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4361856
dc.description.abstractThe proteolytic resistant 33-mer gliadin peptide is an immunodominant fragment in gluten and responsible for the celiac disease and other gluten-related disorders. Meanwhile, the primary structure of the 33-mer is associated with the adaptive immune response in celiac patients, and the structural transformation of the 33-mer into protofilaments activates a primordial innate immune response in human macrophages. This means that accumulation, oligomerisation and structural transformation of the 33-mer could be the unknown first event that triggers the disease. Herein, we reveal the early stepwise mechanism of 33-mer oligomerisation by combining multiple computational simulations, tyrosine cross-linking, fluorescence spectroscopy and circular dichroism experiments. Our theoretical findings demonstrated that the partial charge distribution along the 33-mer molecule and the presence of glutamine that favours H-bonds between the oligomers are the driving forces that trigger oligomerisation. The high content of proline is critical for the formation of the flexible PPII secondary structure that led to a β structure transition upon oligomerisation. Experimentally, we stabilised the 33-mer small oligomers by dityrosine cross-linking, detecting from dimers to higher molecular weight oligomers, which confirmed our simulations. The relevance of 33-mer oligomers as a trigger of the disease as well as its inhibition may be a novel therapeutic strategy for the treatment of gluten-related disorders.
dc.languageeng
dc.publisherRoyal Society of Chemistry
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1039/C9CP02338K
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/journals/journalissues/cp#!issueid=cp021040&type=current&issnprint=1463-9076
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subject33-mer
dc.subjectGLIADIN
dc.subjectMOLECULAR DYNAMICS
dc.subjectOLIGOMERISATION
dc.titleMolecular mechanisms of 33-mer gliadin peptide oligomerisation
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución