artículo
Worst-Case-Optimal Similarity Joins on Graph Databases
Fecha
2024Autor
Arroyuelo Billiardi, Diego Gastón
Bustos, Benjamin
Gómez-Brandón, Adrián
Hogan, Aidan
Navarro, Gonzalo
Reutter de la Maza, Juan
Institución
Resumen
We extend the concept of worst-case optimal equijoins in graph databases to the case where some nodes are required to be within the k-nearest neighbors (kNN) of others under some similarity function. We model the problem by superimposing the database graph with the kNN graph and show that a variant of Leapfrog TrieJoin (LTJ) implemented over a compact data structure called the Ring can be seamlessly extended to integrate similarity clauses with the equijoins in the LTJ query process, retaining worst-case optimality in many relevant cases. Our experiments on a benchmark that combines Wikidata and IMGpedia show that our enhanced LTJ algorithm outperforms by a considerable margin a baseline that first applies classic LTJ and then completes the query by applying the similarity predicates. The difference is more pronounced on queries where the similarity clauses are more densely connected to the query, becoming of an order of magnitude in some cases.
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
ReGraph = bridging relational and graph databases = ReGraph: interligando bancos de dados relacionais e de grafos
Cavoto, Patrícia Raia Nogueira, 1983- -
Combinando P-Graph y S-Graph en la visualización de rutas de evacuación
Khalifah Gamboa, Magdi -
Graph dominance by rook domains for Znp and Zn3 × Zm2 graphs
Piza-Volio, Eduardo