Article
New Brassinosteroid Analogs with 23,24-Dinorcholan Side Chain, and Benzoate Function at C-22: Synthesis, Assessment of Bioactivity on Plant Growth, and Molecular Docking Study
Registro en:
10.3390/ijms25010419
16616596
Autor
Aitken, Vanessa
Diaz, Katy
Soto, Mauricio
Olea, Andrés F.
Cuellar, Mauricio A.
Nuñez, Maria
Espinoza-Catalán, Luis
Institución
Resumen
The synthesis and biological evaluation of brassinosteroids (BRs) analogs with chemical modification in the side alkyl chain is a matter of current interest. Recently, a series of BR analogs with phenyl or benzoate groups in the alkyl chain have been reported. The effect of substitution in the aromatic ring on the biological activities of these new analogs has been evaluated, and the results suggest that the bioactivity is enhanced by substitution with an F atom. In this context, we have synthesized, characterized, and evaluated a series of new analogs of 23,24-bisnorcholenic type in which the benzoate group at the C-22 position is substituted with an F atom at “ortho or para” positions. Plant growth-promoting activities were evaluated by using the rice lamina inclination test and bean second internode biotest. The results obtained with both bioassays indicate that the compound with an F atom in the para position on the aromatic ring is the most active BR analog and in some cases is even more active than brassinolide. The docking study confirmed that compounds with an F atom adopt an orientation similar to that predicted for brassinolide, and the F atom in the “para” position generates an extra hydrogen bond in the predicted binding position. © 2023 by the authors. Dirección de Postgrado y Programas de la Universidad Técnica Federico Santa María; Fondo de Equipamiento Científico y Tecnológico, (EQM190025, EQM200241); Fondo Nacional de Desarrollo Científico y Tecnológico, FONDECYT, (1191330, 1231502)