Article
Multi target tracking using determinantal point processes
Autor
Jorquera, Felipe
Hernández, Sergio
Vergara, Diego
Institución
Resumen
Multi Target Tracking has many applications such as video surveillance and event recognition among others. In this paper, we present a multi object tracking (MOT) method based on point processes and random finite sets theory. The Probability Hypothesis Density (PHD) filter is a MOT algorithm that deals with missed, false and redundant detections. However, the PHD filter, as well as other conventional tracking-by-detection approaches, requires some sort of pre-processing technique such as non-maximum suppression (NMS) to eliminate redundant detections. In this paper, we show that using NMS is sub-optimal and therefore propose Determinantal Point Processes (DPP) to select the final set of detections based on quality and similarity terms. We conclude that PHD filter-DPP method outperforms PHD filter-NMS.