artículo
Nonparametric Bayesian Modeling and Estimation of Spatial Correlation Functions for Global Data
Fecha
2021Registro en:
10.1214/20-BA1228
1936-0975
1931-6690
WOS:000690470400006
Autor
Porcu, Emilio
Bissiri, Pier Giovanni
Tagle, Felipe
Soza, Ruben
Quintana, Fernando A.
Institución
Resumen
We provide a nonparametric spectral approach to the modeling of correlation functions on spheres. The sequence of Schoenberg coefficients and their associated covariance functions are treated as random rather than assuming a parametric form. We propose a stick-breaking representation for the spectrum, and show that such a choice spans the support of the class of geodesically isotropic covariance functions under uniform convergence. Further, we examine the first order properties of such representation, from which geometric properties can be inferred, in terms of Ho spacing diaeresis lder continuity, of the associated Gaussian random field. The properties of the posterior, in terms of existence, uniqueness, and Lipschitz continuity, are then inspected. Our findings are validated with MCMC simulations and illustrated using a global data set on surface temperatures.