dc.creatorPorcu, Emilio
dc.creatorBissiri, Pier Giovanni
dc.creatorTagle, Felipe
dc.creatorSoza, Ruben
dc.creatorQuintana, Fernando A.
dc.date.accessioned2024-01-10T13:45:01Z
dc.date.available2024-01-10T13:45:01Z
dc.date.created2024-01-10T13:45:01Z
dc.date.issued2021
dc.identifier10.1214/20-BA1228
dc.identifier1936-0975
dc.identifier1931-6690
dc.identifierhttps://doi.org/10.1214/20-BA1228
dc.identifierhttps://repositorio.uc.cl/handle/11534/78971
dc.identifierWOS:000690470400006
dc.description.abstractWe provide a nonparametric spectral approach to the modeling of correlation functions on spheres. The sequence of Schoenberg coefficients and their associated covariance functions are treated as random rather than assuming a parametric form. We propose a stick-breaking representation for the spectrum, and show that such a choice spans the support of the class of geodesically isotropic covariance functions under uniform convergence. Further, we examine the first order properties of such representation, from which geometric properties can be inferred, in terms of Ho spacing diaeresis lder continuity, of the associated Gaussian random field. The properties of the posterior, in terms of existence, uniqueness, and Lipschitz continuity, are then inspected. Our findings are validated with MCMC simulations and illustrated using a global data set on surface temperatures.
dc.languageen
dc.publisherINT SOC BAYESIAN ANALYSIS
dc.rightsacceso abierto
dc.subjectcorrelation function
dc.subjectgreat-circle distance
dc.subjectmean square differentiability
dc.subjectnonparametric Bayes
dc.subjectspheres
dc.subjectCOVARIANCE FUNCTIONS
dc.subjectRANDOM-FIELDS
dc.subjectINFERENCE
dc.subjectDIMENSION
dc.subjectDISTANCE
dc.titleNonparametric Bayesian Modeling and Estimation of Spatial Correlation Functions for Global Data
dc.typeartículo


Este ítem pertenece a la siguiente institución