dc.creatorMarmolejo-Ramos, Fernando
dc.creatorTejo, Mauricio
dc.creatorBrabec, Marek
dc.creatorKuzilek, Jakub
dc.creatorJoksimovic, Srecko
dc.creatorKovanovic, Vitomir
dc.creatorGonzalez Burgos, Jorge
dc.creatorKneib, Thomas
dc.creatorBühlmann, Peter
dc.creatorKook, Lucas
dc.creatorBriseño Sánchez, Guillermo
dc.creatorOspina, Raydonal
dc.date.accessioned2023-12-20T13:10:14Z
dc.date.accessioned2024-05-02T15:52:23Z
dc.date.available2023-12-20T13:10:14Z
dc.date.available2024-05-02T15:52:23Z
dc.date.created2023-12-20T13:10:14Z
dc.date.issued2022
dc.identifier10.1002/widm.1479
dc.identifier1942-24795
dc.identifier19424795 19424787
dc.identifierSCOPUS_ID:85140231241
dc.identifierhttps://doi.org/10.1002/widm.1479
dc.identifierhttp://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1942-4795
dc.identifierhttps://repositorio.uc.cl/handle/11534/75550
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9265424
dc.description.abstractThe advent of technological developments is allowing to gather large amounts of data in several research fields. Learning analytics (LA)/educational data mining has access to big observational unstructured data captured from educational settings and relies mostly on unsupervised machine learning (ML) algorithms to make sense of such type of data. Generalized additive models for location, scale, and shape (GAMLSS) are a supervised statistical learning framework that allows modeling all the parameters of the distribution of the response variable with respect to the explanatory variables. This article overviews the power and flexibility of GAMLSS in relation to some ML techniques. Also, GAMLSS' capability to be tailored toward causality via causal regularization is briefly commented. This overview is illustrated via a data set from the field of LA. This article is categorized under: Application Areas > Education and Learning Algorithmic Development > Statistics Technologies > Machine Learning.
dc.languageen
dc.publisherJohn Wiley and Sons Inc
dc.relationWiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
dc.subjectCausal regularization
dc.subjectCausality
dc.subjectEducational data mining
dc.subjectGeneralized additive models for location, scale, and shape
dc.subjectLearning analytics
dc.subjectMachine learning
dc.subjectStatistical learning
dc.subjectStatistical modeling
dc.subjectSupervised learning
dc.titleDistributional regression modeling via generalized additive models for location, scale, and shape: An overview through a data set from learning analytics
dc.typeartículo


Este ítem pertenece a la siguiente institución