artículo
Detailed micro-modeling of partially grouted reinforced masonry shear walls: extended validation and parametric study
Fecha
2021Registro en:
10.1007/s43452-021-00237-z
Autor
Calderón Díaz, Sebastián Andrés
Sandoval Mandujano, Cristián
Milani, Gabriele
Arnau, Oriol
Institución
Resumen
Partially grouted reinforced masonry (PG-RM) shear walls have been widely used as structural elements in low- and medium-rise earthquake-resistant buildings. Nonetheless, assessing its shear strength represents a complex task mainly because the partial grouting provides a non-constant cross section, which results in heterogeneous stress–strain patterns. Consequently, refined modeling techniques are needed to reproduce local failure mechanisms taking place in these walls, which significantly influence the global response. In response to this issue, a detailed micro-modeling approach based on the finite element method was proposed in previous studies by the authors. Although the numerical strategy provided accurate results, further validation is required. Therefore, in this study, the experimental results of seven PG-RM shear walls of multi-perforated clay bricks with bed-joint reinforcement are employed as validation cases. These seven walls presented variations in five design parameters. The validated numerical model was then employed to perform a parametric study to assess the influence of the wall aspect ratio, axial pre-compression stress, and horizontal reinforcement ratio on the in-plane lateral behavior of PG-RM shear walls. The obtained results show that the three studied design parameters modified the crack patterns of the walls. Besides, increasing the axial pre-compression stress or reducing the aspect ratio resulted in higher walls’ shear strength. Additionally, decreasing the horizontal reinforcement ratio or increasing the aspect ratio generated a higher story-drift ratio at maximum lateral force. Finally, it was corroborated that the positive effect of the axial pre-compression stress on the walls’ shear strength decreases inversely proportional to the aspect ratio.