Tesis
Diseño y desarrollo de un sistema de generación eléctrica para espacios de interiores empleando la tecnología de plantas vivas y microorganismos (PMFC)
Fecha
2023Autor
Lara Parra, Alejandro
Fernández Baeza, Francisco
Institución
Resumen
Las plantas utilizan la energía de la luz solar para realizar el proceso de fotosíntesis, el cual es un proceso
metabólico por el cual las plantas sintetizan compuestos orgánicos, que luego se exudan en forma de
metabolitos a través de las raíces a la tierra. Estos metabolitos son captados como alimento por el microbiota
natural del suelo, generando el rompimiento de estas moléculas y la liberación de electrones, los cuales
pueden ser captados por electrodos y generar una corriente eléctrica. A este sistema se le denomina PMFC
y puede generar energía de forma continua las 24 horas del día, produciendo una fuente sostenible de energía
sin interrupción del medio ambiente. La generación de energía eléctrica en Chile mayoritariamente proviene
de fuentes fósiles, lo que impacta negativamente en el medio ambiente y en la salud humana. El acuerdo de
París incentiva a los países a tomar medidas para mitigar el cambio climático, por lo que en Chile se aprobó
la ley "Marco de Cambio Climático" que establece la transición a energías renovables al 2050. Sin embargo,
la inversión en energías renovables tiene limitaciones, como el alto costo por kW y su imposibilidad de
adaptarse en espacios interiores. Es por esto por lo que surge la oportunidad de desarrollar un sistema de
generación alternativo que genere energía sustentable e individual a partir de plantas y microorganismos,
repercutiendo en ahorro e independencia. Por esto surgen cada vez más empresas preocupadas de la
responsabilidad social empresarial, de cómo sus acciones impactan a los potenciales clientes y que se
encuentran en la búsqueda de alternativas más sustentables, es por esto que nos enfocamos en espacios de
coworking. El objetivo de este proyecto es optimizar y validar técnicamente un sistema de generación
eléctrica que emplee la tecnología de PMFC y que se pueda aplicar a un producto. La metodología de este
proyecto se basa en que planta, tipo de suelo, combinación de electrodos y espacio, resultan apropiadas para
el prototipado de un biopanel, para esto se llevaron a cabo diversas pruebas bajo ambiente no controlado
(condiciones de no laboratorio) y controlado (condiciones de laboratorio) empleando diversos tipos de
especies vegetales, tamaños de macetas, electrodos y tipos de suelo y seleccionando la mejor condición a
partir de un análisis estadístico de la varianza (ANOVA). Se desarrolló el prototipo del biopanel vegetal de
0,15 m², seleccionando las mejores condiciones (especie, electrodo y suelo) y obtuvimos una tensión de 13
V, una corriente de 0,014 A y una potencia 0.182 W. La evidencia que presentamos demuestra que
efectivamente al optimizar una PMFC se puede aumentar la cantidad de energía generada, pero con los
valores obtenidos continúa siendo muy poco eficiente. Plants use the energy from sunlight to perform the process of photosynthesis, which is a metabolic process
by which plants synthesize organic compounds that are then exuded in the form of metabolites through the
roots into the soil. These metabolites are taken up as food by the natural soil microbiota, generating the
breaking of these molecules and the release of electrons, which can be captured by electrodes to generate an
electric current. This system is called a plant microbial fuel cell (PMFC) and can generate energy
continuously 24 hours a day, producing a sustainable source of energy without disrupting the environment.
The majority of electricity generation in Chile comes from fossil fuels, which has a negative impact on the
environment and human health. The Paris Agreement encourages countries to take measures to mitigate
climate change, so Chile has approved the "Framework Law on Climate Change," which establishes the
transition to renewable energy by 2050. However, investment in renewable energy has limitations, such as
the high cost per kW and its inability to adapt to indoor spaces. This is why the opportunity arises to develop
an alternative generation system that produces sustainable and individual energy from plants and
microorganisms, resulting in savings and independence. This is why more and more companies are
concerned about corporate social responsibility, how their actions impact potential customers, and are
searching for more sustainable alternatives, which is why we focus on coworking spaces. The objective of
this project is to optimize and technically validate an electricity generation system that uses PMFC
technology and can be applied to a product. The methodology of this project is based on which plant, soil
type, electrode combination, and space are appropriate for prototyping a biopanel. To do this, various tests
were carried out under uncontrolled (non-laboratory) and controlled (laboratory) conditions, using different
types of plant species, pot sizes, electrodes, and soil types, and selecting the best condition based on an
analysis of variance (ANOVA). The prototype of the 0.15 m² biopanel was developed, selecting the best
conditions (species, electrode, and soil), and we obtained a voltage of 13 V, a current of 0.014 A, and a
power of 0.182 W. The evidence we present shows that by optimizing a PMFC, the amount of energy
generated can be increased, but with the values obtained, it remains highly inefficient.