Sistema de simulación de la iluminación abdominal basado en mini robots

dc.creatorChaparro Velasco, María Cristina
dc.creatorSabater-Navarro, Jose Maria
dc.creatorVivas, Oscar Andrés
dc.date2023-06-23T22:19:53Z
dc.date2023-06-23T22:19:53Z
dc.date2021
dc.date.accessioned2023-10-03T19:52:44Z
dc.date.available2023-10-03T19:52:44Z
dc.identifierM. Chaparro Velasco, J. Sabater Navarro & O. Vivas Albán, “Abdominal Lighting Simulation System Based on Mini Robots” INGE CUC, vol. 17, no. 2, pp. 1–11, 2021. DOI: http://doi.org/10.17981/ingecuc.17.2.2021.14
dc.identifier2382-4700
dc.identifierhttps://hdl.handle.net/11323/10259
dc.identifier10.17981/ingecuc.17.2.2021.14
dc.identifier0122-6517
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9172913
dc.descriptionIntroduction— This document shows a system that simulates the illumination of the abdominal scene in laparoscopic operations using mini robots. The mini robots would be magnetically tied to the abdominal cavity and manipulated by an external robot arm. Two algorithms are tested in this system: one that moves the mini robot according to the movement of the endoscope, and another that moves from an analysis of the image captured by the scene. Objective— To contribute to the illumination of the surgical scene by means of mini robots attached magnetically to the abdominal cavity. Methodology— A software tool was developed using Unity3D, which simulates the interior of the abdomen in laparoscopic operations, adding a new lighting: a mini light-type robot magnetically anchored to the abdominal wall. The mini robot has two different movements to illuminate the scene, one depends on the movement of the endoscope and the other on the image analysis performed. Results— Tests were performed with a representation of the real environment comparing it with the tests in the built tool, obtaining similar results and showing the potential of a mini robot to provide additional lighting to the surgeon if necessary. Conclusions— The designed algorithm allows a mini robot that is magnetically anchored in the abdominal wall to move to low-light areas following two options: a geometric relationship or movement as a result of image analysis.
dc.descriptionIntroducción— Este documento muestra un sistema que simula la iluminación de la escena abdominal en operaciones de laparoscopia utilizando mini robots. Los mini robots estarían atados magnéticamente a la cavidad abdominal y serían manipulados por un brazo robot externo. Dos algoritmos son probados en este sistema: uno que mueve al mini robot de acuerdo al movimiento del endoscopio, y otro que lo mueve a partir de un análisis de la imagen captada por la escena. Objetivo— Contribuir a la iluminación de la escena quirúrgica por medio de mini robots atados magnéticamente a la cavidad abdominal. Metodología— Se desarrolló una herramienta software por medio de Unity3D, la cual simula el interior del abdomen en operaciones de laparoscopia, agregándosele una nueva iluminación: un mini robot tipo luz anclado magnéticamente a la pared abdominal. El mini robot tiene dos movimientos diferentes para iluminar la escena, uno depende del movimiento del endoscopio y otro del análisis de imagen realizado. Resultados— Se realizaron pruebas con una representación del entorno real comparándola con las pruebas en la herramienta construida, obteniéndose resultados similares y mostrando el potencial que tiene un mini robot para proporcionar una iluminación adicional al cirujano en caso de ser necesario. Conclusiones— El algoritmo diseñado permite que un mini robot que estaría anclado magnéticamente a la pared abdominal, se mueva a zonas de baja iluminación siguiendo dos opciones: una relación geométrica o un movimiento como resultado de un análisis de imagen.
dc.format24 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.publisherColombia
dc.relationINGE CUC
dc.relation[1] D. Ruiz-Navas, V. Z., Pérez-Ariza, M. J. Betancur-Betancur, y J. Bustamante-Osorno, “Cirugía robótica mínimamente invasiva: análisis de fuerza y torque,” Rev Ing Biom, vol. 4, no. 8, pp. 84–92, 2014. Disponible en http://repository.eia.edu.co/handle/11190/492
dc.relation[2] G. Galloso & R. Frías, “Consideraciones sobre la evolución histórica de la cirugía laparoscópica: colecistectomía,” Rev Med Electrón, vol. 32, sup. 7, pp. 0–0, 2010. Disponible en http://www.revmedicaelectronica.sld.cu/index.php/rme/article/view/786
dc.relation[3] C. Brunicardi, Schwartz principios de cirugía. CDMX, MX: Mc Graw Hill, 2015.
dc.relation[4] P. Ricci, R. Lema, V. Solá, J. Pardo y E. Guiloff, “Desarrollo de la cirugía laparoscópica: pasado, presente y futuro: desde Hipócrates hasta la introducción de la robótica en laparoscopía ginecológica,” Rev chil Obstet Ginecol, vol. 73, no. 1, pp. 63–75, Feb. 2008. https://dx.doi.org/10.4067/S0717- 75262008000100011
dc.relation[5] S. Longmore, G. Naik y G. Gargiulo , “Laparoscopic Robotic Surgery: Current Perspective and Future Directions,” Robotics, vol. 9, no 2, pp. 42, 2020. https://dx.doi.org/10.3390/robotics9020042
dc.relation[6] M. Tiwari, J. F. Reynoso, A. C. Lehman, A. W. Tsang, S. M. Farritor y D. Oleynikov , “In vivo miniature robots for natural orifice surgery: State of the art and future perspectives,” World J. Gastrointest. Surg., vol. 2, no. 6, pp. 217, 2010. https://dx.doi.org/10.4240/wjgs.v2.i6.217
dc.relation[7] J. Raman, J. A. Cadeddu, P. Rao & A. Rane , “Single-incision laparoscopic surgery: initial urological experience and comparison with natura-orifice transluminal endoscopic surgery,” BJU Inter, vol. 101, no. 12, pp. 1493–1496, 2008. https://dx.doi.org/10.1111/j.1464-410X.2008.07586.x
dc.relation[8] J. Noguera, C. Moreno, A. Cuadrado, J. M. Olea, R. Morales, J. C. Vicens, M. L. Herrero y L. Lozano, “Historia y situación actual de la cirugía endoscópica por orificios naturales en nuestro país,” Cir Esp, vol. 88, no 4, pp. 222–227, 2010. https://dx.doi.org/10.1016/j.ciresp.2010.03.046
dc.relation[9] B. Peters, P. R. Armijo, C. Krause, S. A. Choudhury & D. Oleynikov , “Review of emerging surgical robotic technology,” Surg Endosc, vol 32, no. 4, pp. 1–20, 2018. https://dx.doi.org/10.1007/s00464-018- 6079-2
dc.relation[10] T. Wortman, “Design, analysis, and testing of in vivo surgical robots,” M. Sc., Dept Mech Mat Eng, UNL, NE, USA, 2011. Disponible en https://digitalcommons.unl.edu/mechengdiss/28/
dc.relation[11] M. Rentschler & D. Oleynikov, “Recent in vivo surgical robot and mechanism developments,” Surg Endosc, vol. 21, no 9, pp. 1477–1481, 2007. https://dx.doi.org/10.1007/s00464-007-9338-1
dc.relation[12] M. Cuevas-Rodríguez, B. Estébanez, E. Bauzano, I. Rivas-Blanco, I. Garcia-Morales, V. F. Muñoz, L. D. Lledo y J. M. Sabater, “Integración de una plataforma robótica de asistencia al cirujano en operaciones laparoscópicas de puerto único,” presentado en XXXV Jornadas de Automática, CEA, VLC, ES, 2014. Recuperado de http://www.ja2014.upv.es/wp-content/uploads/papers/paper_51.pdf
dc.relation[13] I. Rivas-Blanco, , B. Estebanez, M. Cuevas-Rodríguez, I. García-Morales y V. F. Muñoz, “Diseño de un asistente camarógrafo para técnicas de cirugía laparoscópica por puerto único,” presentado en XXXV Jornadas de Automática, CEA, VLC, ES, 2014. Disponible en http://www.ja2014.upv.es/
dc.relation[14] Gobierno de España, Micro Abdominal Robot Cooperative System, Proyecto MARCUS, [online], 2022. Disponible en http://www.roboticamedica.uma.es/marcus/INDEX.PHP/
dc.relation[15] M. C. Chaparro & O. A. Vivas, “Tool for optimum illumination of the abdominal cavity in laparoscopic surgeries using lighting mini robots,” presentado en Colombian Conference on Robotics and Automation, PAHCE, BTA, CO, PAHCE, 2016. https://dx.doi.org/10.1109/ccra.2016.7811405
dc.relation[16] C. A Suárez, Cirugía Laparoscópica, J. Cueto y A. Weber (eds.), BAR, ES, McGraw-Hill, 1988.
dc.relation[17] I. Halim, & A. Tavakkolizadeh, “NOTES: The next surgical revolution?,” Int J Surg, vol. 6, no. 4, pp. 273–276, 2008. https://dx.doi.org/10.1016/j.ijsu.2007.10.002
dc.relation[18] D. Vera & A. Vivas, “Ambiente virtual para el entrenamiento de cirugías laparoscópicas utilizando robots,” presentado en Pan American Health Care Exchanges, PAHCE, MDE, CO, 2013. Disponible en https://www.pahce.org/
dc.relation[19] S. Tognarelli, M. Salerno, G. Tortora, C. Quaglia, P. Dario, M. O. Schurr & A. Menciassi , “A miniaturized robotic platform for natural orifice transluminal endoscopic surgery: in vivo validation,” Surg Endosc, vol. 29, no. 12, pp. 3477–3484, 2015. https://dx.doi.org/10.1007/s00464-015-4097-x
dc.relation[20] B.P.M Yeung & T. Gourlay, “A technical review of flexible endoscopic multitasking platforms,” Int J Surg, vol. 10, no. 7, pp. 345–354, 2012. https://dx.doi.org/10.1016/j.ijsu.2012.05.009
dc.relation[21] ViaCath diagnostic catheters, Biotronik, [online], 2022. Recuperado de www.biotronik.com/sixcms/media.php/136/ViaCath_EN.pdf
dc.relation[22] R. Sotelo, J. C. Astigueta, O. Carmona, R. De Andrade y R. Sanchez-Salas, “Laparoendoscopia por acceso único: experiencia inicial,” Actas Urol Esp, vol. 33, no. 2172–181, 2009. https://dx.doi.org/10.1016/ s0210-4806(09)74119-1
dc.relation[23] J. M. Sabater-Navarro, R. J. Saltaren, J. M. Ibarra-Zannatha, L. E. Rodriguez Cheu, A. Vivas, J. C. Politti, J. Serracin y E. Rubio, Robotica Medica – Notas prácticas para el Aprendizaje de la Robótica en Bioingenierıa. BAR, ES: Opensurg, 2013
dc.relation[24] S. Martel, “Journey to the center of a tumor,” IEEE Spect, vol. 49, no 10, pp. 48–53, 2012. https://dx.doi. org/10.1109/mspec.2012.6309256
dc.relation[25] R. Bogue, “Miniature and microrobots: a review of recent developments,” Ind Rob, vol. 42, no. 2, pp. 98–102, 2015. https://dx.doi.org/10.1108/ir-11-2014-0409
dc.relation[26] A. Forgione, “In vivo microrobots for natural orifice transluminal surgery. Current status and future perspectives,” Surg Oncol, vol. 18, no. 2, pp. 121–129, Jun. 2009. https://dx.doi.org/10.1016/j.suronc.2008.12.006
dc.relation[27] B. Chen, Y.-D. Liu, S. Chen, S.-R. Jiang & H.-T. Wu, “A biomimetic spermatozoa propulsion method for interventional micro robot,” J Bionic Eng, vol. 5, Sup., pp. 106–112, 2008. https://dx.doi.org/10.1016/ S1672-6529(08)60080-3
dc.relation[28] K. Tokida, A. Yamaguchi, K. Takemura, S. Yokota & K. Edamura, “A bio-inspired robot using electro-conjugate fluid,” J Robot Mechatron, vol. 25, no. 1, pp. 16–24, 2013. https://dx.doi.org/10.20965/ jrm.2013.p0016
dc.relation[29] J. Eid & D. Oleynikov, Cooperative and Miniature Robotics: Potential Applications in Surgery. In: S. Atallah (eds), Dig Surg, Cham, Springer, pp. 269–273, 2020. https://dx.doi.org/10.1007/978-3-030- 49100-0_20
dc.relation[30] M. Simi, G. Gerboni, A. Menciassi & P. Valdastri, “Magnetic mechanism for wireless capsule biopsy,” J Med Devices, vol. 6, no. 1, pp. 17611, 2012. https://dx.doi.org/10.1115/1.40267899
dc.relation[31] S. Ueno, K. Takemura, S. Yokota & K. Edamura, “Micro inchworm robot using electro-conjugate fluid,” Sens, vol. 216, pp. 36–42, 2014. https://dx.doi.org/10.1016/j.sna.2014.04.032
dc.relation[32] J. D. Raman, D. J. Scott & J. Cadeddu, “A. Role of magnetic anchors during laparoendoscopic single site surgery and NOTES,” J Endourol, vol. 23, no. 5, pp. 781–786, 2009. https://dx.doi.org/10.1089/ end.2008.0033
dc.relation[33] S. Tognarelli, M. Salerno, G. Tortora, C. Quaglia, P. Dario & A. M enciassi, “An endoluminal robotic platform for Minimally Invasive Surgery,” presentado en 4th IEEE RAS & EMBS, BioRob, Ro, It, pp. 7–12, 2012. https://dx.doi.org/10.1109/BioRob.2012.6290731
dc.relation[34] B. S. Terry, Z. C. Mills, J. A. Schoen & M. E. Rentschler, “Single-port-access surgery with a novel magnet camera system,” Trans Biomed Eng, vol. 59, no. 4, pp. 1187–1193, 2012. https://dx.doi.org/10.1109/ TBME.2012.2187292
dc.relation[35] J.C Kuo, H.-W. Huang, S.-W. Tung & Y.-J. Yang, “A hydrogel-based intravascular microgripper manipulated using magnetic fields,” Sens, vol. 211, pp. 121–130, May. 2014. https://dx.doi.org/10.1016/j. sna.2014.02.028
dc.relation[36] J. Cadeddu, R. Fernández, M. M. Desai, R. Bergs, C. R. Tracy, S.-J. Tang & M. R. Desai, “Novel magnetically guided intra-abdominal camera to facilitate laparoendoscopic single-site surgery: initial human experience,” Surg Endosc, vol. 23, no. 8, pp. 1894–1899, 2009. https://dx.doi.org/10.1016/s0022- 5347(09)60900-9
dc.relation[37] S.L Best, S. L. Best, W. Kabbani, D. J. Scott, R. Bergs, H. Beardsley, R. Fernández, L. B. Mashaud & J. A. Cadeddu, “Magnetic anchoring and guidance system instrumentation for laparo-endoscopic singlesite surgery/natural orifice transluminal endoscopic surgery: lack of histologic damage after prolonged magnetic coupling across the abdominal wall,” Urology, vol. 77, no. 1, pp. 243–247, 2011. https://dx.doi. org/10.1016/j.urology.2010.05.041
dc.relation[38] N.A Arain, L. Rondon, D. C. Hogg, J. A. Cadeddu, R. Bergs, R. Fernández & D. J. Scott , “Magnetically anchored camera and percutaneous instruments maintain triangulation and improve cosmesis compared with single-site and conventional laparoscopic cholecystectomy,” Surg Endosc, vol. 26, no. 12, pp. 3457–3466, 2012. https://dx.doi.org/10.1007/s00464-012-2354-9
dc.relation[39] R. Steinberg, B. A. Johnson, M. Meskawi, M. T. Gettman & J. A. Cadeddu, “Magnet-Assisted Robotic Prostatectomy Using the da Vinci SP Robot: An Initial Case Series,” J Endourol, vol. 33, no. 10, pp. 829–834, 2019. https://dx.doi.org/10.1089/end.2019.0263
dc.relation[40] D. Oleynikov, M. Rentschler, A. Hadzialic, J. Dumpert, S. R. Platt & S. Farritor, “Miniature robots can assist in laparoscopic cholecystectomy,” Surgical Endoscopy, vol. 19, no. 4, pp. 473–476, 2005. https://dx.doi.org/10.1007/s00464-004-8918-6
dc.relation[41] G. Yin, Gang Yin, W. K. Han, S. Faddegon, Y. K. Tan, Z.-W. Liu, E. O. Olweny, D. J. Scott & J. A. Cadeddu, “Laparoendoscopic single site (LESS) in vivo suturing using a magnetic anchoring and guidance system (MAGS) camera in a porcine model: impact on ergonomics and workload,” Urology, vol. 81, no. 1, pp. 80–84, 2013. https://dx.doi.org/10.1016/j.urology.2012.09.018
dc.relation[42] M. Karimi, S. S. Ghidary, R. Shekhar, T. D. Kane & R. Monfaredi, “Magnetically anchored pantilt stereoscopic robot with optical-inertial stabilization for minimally invasive surgery,” presented at Medical Imaging 2019, SPIE, SD, CA, USA, 2019. https://dx.doi.org/10.1117/12.2513019
dc.relation[43] MIRA, Virtual Incision, [online], 2022. Disponible en https://virtualincision.com/
dc.relation[44] D. Stoyanov, D. Elson & G. Z Yang, “Illumination position estimation for 3D soft-tissue reconstruction in robotic minimally invasive surgery,” presented at International Conference on Intelligent Robots and Systems, RSJ, Louis, MO, USA, pp. 2628–2633, Oct. 2009. https://dx.doi.org/10.1109/ IROS.2009.5354447
dc.relation[45] R. T Shimotsu & C. G Cao, “The effect of color-contrasting shadows on a dynamic 3-D laparoscopic surgical task,” IEEE Trans Syst Man Cybern: Syst, vol. 37, no. 6, pp. 1047–1053, 2007. https://dx.doi. org/10.1109/tsmca.2007.904738
dc.relation[46] D. Pakhomov, V. Premachandran, M. Allan, M. Azizian & N. Navab, Deep residual learning for instrument segmentation in robotic surgery. In: H. Suk, M. Liu, P. Yan & C. Lian (eds), Machine Learning in Medical Imaging, Cham, Springer, pp. 566–573, 2019. https://dx.doi.org/10.1007/978-3- 030-32692-0_65
dc.relation[47] S. Tchoulack, J. P Langlois & F. Cheriet, “A video stream processor for real-time detection and correction of specular reflections in endoscopic images,” presented at Joint 6th International IEEE Northeast Workshop on Circuits and Systems and TAISA Conference, IEEE, Montreal, QC, CA, pp. 42–59, 2008. https://dx.doi.org/10.1109/newcas.2008.4606318
dc.relation[48] J.J Guo, D.-F. Shen, G.-S. Lin, J.-C. Huang, K.-C. Liu & W.-N. Lie, “A specular reflection suppression method for endoscopic images,” presented at IEEE Second International Conference on Multimedia Big Data, BigMM, TPE, TW, pp. 125–128, 2016. https://dx.doi.org/10.1109/bigmm.2016.78
dc.relation[49] D. Stoyanov & G. Z. Yang, “Removing specular reflection components for robotic assisted laparoscopic surgery,” presented at IEEE International Conference on Image Processing, IEEE, GE, IT, pp. III–632, 2005. https://dx.doi.org/10.1109/icip.2005.1530471
dc.relation[50] A. C Lee, D. S. Elson, M. A. Neil, S. Kumar, B. W. Ling, F. Bello & G. B. Hanna , “Solid-state semiconductors are better alternatives to arc-lamps for efficient and uniform illumination in minimal access surgery,” Surg Endosc, vol. 23, no. 3, pp. 518–526, Mar. 2009. https://dx.doi.org/10.1007/s00464-008- 9854-7
dc.relation[51] T. Hu, P. K. Allen, N. J. Hogle & D. L. Fowler, “Insertable surgical imaging device with pan, tilt, zoom, and lighting,” Int J Robot Res, vol. 28, no. 10, pp. 1373–1386, May. 2009. https://dx.doi. org/10.1177/0278364908104292
dc.relation[52] D.-H. Dong, H.-Y. Zhu, Y. Luo, H.-K. Zhang, J.-X. Xiang, F. Xue, R.-Q. Wu & Y. Lv , “Miniature magnetically anchored and controlled camera system for trocar-less laparoscopy,” World J Gastroenterol, vol. 23, no. 12, pp. 2168, 2017. https://dx.doi.org/10.3748/wjg.v23.i12.2168
dc.relation[53] M. Simi, M. Silvestri, C. Cavallotti, M. Vatteroni, P. Valdastri, A. Menciassi & P. Dario, “Magnetically activated stereoscopic vision system for laparoendoscopic single-site surgery,” IEEE/ASME Trans Mechatron, vol. 18, no. 3, pp. 1140–1151, 2012. https://dx.doi.org/10.1109/tmech.2012.2198830
dc.relation[54] A. R Yazdanpanah, X. Liu, N. Li & J. Tan.A novel laparoscopic camera robot with in-vivo lens cleaning and debris prevention modules,” presented at IROS, IEEE/RSJ, VBC, CA, pp. 3669–3674, 2017. https://dx.doi.org/10.1109/iros.2017.8206212
dc.relation[55] Boston Center Perú, Cirugía laparoscópica de estómago, [online], 2022. Disponible en http://cirugiaendoscopicaperu.com/?q=node/197
dc.relation[56] Open CV, Histogram calculation, [online], 2022. Disponible en https://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/histogram_calculation/histogram_calculation.html
dc.relation[57] Open CV, Histograms - 1: Find, Plot, Analyze, [online], 2022. Disponible en https://docs.opencv. org/3.1.0/d1/db7/tutorial_py_histogram_begins.html
dc.relation[58] Cambridge in Colour, Camera histograms: Tones & Contrast, [online], 2022. Disponible en http://www. cambridgeincolour.com/tutorials/histograms1.htm
dc.relation166
dc.relation143
dc.relation2
dc.relation17
dc.rightsDerechos de autor 2021 INGE CUC
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://revistascientificas.cuc.edu.co/ingecuc/article/view/2982
dc.subjectImage analysis
dc.subjectMini lighting robots
dc.subjectMini robots
dc.subjectSurgical robotics
dc.subjectUnity3D
dc.titleAbdominal lighting simulation system based on mini robots
dc.titleSistema de simulación de la iluminación abdominal basado en mini robots
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución