Artículo de revista
Sensor-based datasets for human activity recognition - a systematic review of literature
Registro en:
21693536
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
Autor
De la Hoz, Emiro
Ariza Colpas, Paola Patricia
Medina Quero, Javier
Espinilla, Macarena
Institución
Resumen
The research area of ambient assisted living has led to the development of activity recognition
systems (ARS) based on human activity recognition (HAR). These systems improve the quality of life and
the health care of the elderly and dependent people. However, before making them available to end users, it is
necessary to evaluate their performance in recognizing activities of daily living, using data set benchmarks
in experimental scenarios. For that reason, the scientific community has developed and provided a huge
amount of data sets for HAR. Therefore, identifying which ones to use in the evaluation process and which
techniques are the most appropriate for prediction of HAR in a specific context is not a trivial task and
is key to further progress in this area of research. This work presents a systematic review of the literature
of the sensor-based data sets used to evaluate ARS. On the one hand, an analysis of different variables
taken from indexed publications related to this field was performed. The sources of information are journals,
proceedings, and books located in specialized databases. The analyzed variables characterize publications
by year, database, type, quartile, country of origin, and destination, using scientometrics, which allowed
identification of the data set most used by researchers. On the other hand, the descriptive and functional
variables were analyzed for each of the identified data sets: occupation, annotation, approach, segmentation,
representation, feature selection, balancing and addition of instances, and classifier used for recognition.
This paper provides an analysis of the sensor-based data sets used in HAR to date, identifying the most
appropriate dataset to evaluate ARS and the classification techniques that generate better results.