dc.relation | [1] D. A. Umphred, Neurological Rehabilitation, vol. 27. Amsterdam,
The Netherlands: Elsevier, no. 5, 2013.
[2] D. Arifoglu and A. Bouchachia, ‘‘Activity recognition and abnormal
behaviour detection with recurrent neural networks,’’ Procedia Comput.
Sci., no. 110, pp. 86–93, Jul. 2017, doi: 10.1016/j.procs.2017.06.121.
[3] M. S. Albert et al., ‘‘The diagnosis of mild cognitive impairment due to
Alzheimer’s disease: Recommendations from the National Institute on
Aging-Alzheimer’s Association workgroups on diagnostic guidelines for
Alzheimer’s disease,’’ Alzheimer’s Dementia, vol. 7, no. 3, pp. 270–279,
2011, doi: 10.1016/j.jalz.2011.03.008.
[4] F. E. Mendoza et al., ‘‘Cardiovascular disease analysis using supervised
and unsupervised data mining techniques,’’ J. Softw., vol. 12, no. 2,
pp. 81–90, Feb. 2017, doi: 10.17706/jsw.12.2.81-90.
[5] Alzheimer’s Association, ‘‘2013 Alzheimer’s disease facts and figures,’’ Alzheimer’s Dementia, vol. 9, no. 2, pp. 208–245, Mar. 2013,
doi: 10.1016/j.jalz.2013.02.003.
[6] T. L. M. van Kasteren, G. Englebienne, and B. J. A. Kröse, ‘‘Human
activity recognition from wireless sensor network data: Benchmark and
software,’’ in Activity Recognition in Pervasive Intelligent Environments,
vol. 4. Paris, France: Atlantis Press, 2011, pp. 165–186. doi: 10.2991/978-
94-91216-05-3_8.
[7] J. Ye, S. Dobson, and S. McKeever, ‘‘Situation identification techniques
in pervasive computing: A review,’’ Pervasive Mobile Comput., vol. 8,
no. 1, pp. 36–66, 2012, doi: 10.1016/j.pmcj.2011.01.004.
[8] A. Aztiria, J. C. Augusto, R. Basagoiti, A. Izaguirre, and D. J. Cook,
‘‘Learning frequent behaviours of the users in intelligent environments,’’
J. Ambient Intell. Smart Environ., vol. 2, no. 4, pp. 435–436, 2010,
doi: 10.3233/AIS-2010-0084.
[9] M. Ghazvininejad, H. R. Rabiee, N. Pourdamghani, and P. Khanipour,
‘‘HMM based semi-supervised learning for activity recognition,’’ in
Proc. ACM Int. Workshop Situation Activity Goal Awareness, Sep. 2011,
pp. 95–100, doi: 10.1145/2030045.2030065.
[10] P. Lasitha and S. Kodagoda, ‘‘Gaussian mixture based HMM for
human daily activity recognition using 3D skeleton features,’’ in Proc.
IEEE 8th Conf. Ind. Electron. Appl. (ICIEA), Jul. 2013, pp. 567–572,
doi: 10.1109/ICIEA.2013.6566433.
[11] N. Oliver, E. Horvitz, and A. Garg, ‘‘Layered representations for human
activity recognition,’’ in Proc. 4th IEEE Int. Conf. Multimodal Interfaces,
Oct. 2002, pp. 3–8, doi: 10.1109/ICMI.2002.1166960.
[12] S. Mostafa-Al-Masum, H. Keikichi, and I. Mitsuru, ‘‘Recognition of realworld activities from environmental sound cues to create life-log,’’ in
The Systemic Dimension of Globalization. Rijeka, Croatia: InTech, 2011,
pp. 173–190, doi: 10.5772/22491.
[13] G. Singla, D. J. Cook, and M. Schmitter-Edgecombe, ‘‘Recognizing
independent and joint activities among multiple residents in smart
environments,’’ J. Ambient Intell. Humanized Comput., vol. 1, no. 1,
pp. 57–63, 2010, doi: 10.1007/s12652-009-0007-1.
[14] L. Young-Seol and C. Sung-Bae, ‘‘Activity recognition using hierarchical
hidden Markov models on a smartphone with 3D accelerometer,’’ in
Proc. Int. Conf. Hybrid Artif. Intell. Syst., in Lecture Notes in Computer Science, vol. 6678. Berlin, Germany: Springer, 2011, pp. 460–467,
doi: 10.1007/978-3-642-21219-2_58.
[15] A. M. Mannini and A. Sabatini, ‘‘Machine learning methods for classifying human physical activity from on-body accelerometers,’’ Sensors,
vol. 10, no. 2, pp. 1154–1175, 2010, doi: 10.3390/s100201154.
[16] H. Gjoreski, M. Gams, and M. Lutrek, ‘‘Human activity recognition:
From controlled lab experiments to competitive live evaluation,’’ in
Proc. IEEE Int. Conf. Data Mining Workshop (ICDMW), Nov. 2015,
pp. 139–145, doi: 10.1109/ICDMW.2015.29.
[17] H. Gjoreski, M. Gams, and M. Lustrek, ‘‘Context-based fall detection ˝
and activity recognition using inertial and location sensors,’’ J. Ambient
Intell. Smart Environ., vol. 6, no. 4, pp. 419–433, 2014, doi: 10.3233/AIS140268.
[18] H. H. Manap, N. M. Tahir, and A. I. M. Yassin, ‘‘Anomalous gait
detection based on support vector machine,’’ in Proc. IEEE Int. Conf.
Comput. Appl. Ind. Electron., Dec. 2011, pp. 623–626, doi: 10.1109/
ICCAIE.2011.6162209.
[19] H. Gjoreski, B. Kaluža, M. Gams, M. Radoje, and M. Luštrek,
‘‘Context-based ensemble method for human energy expenditure estimation,’’ Appl. Soft Comput., vol. 37, pp. 960–970, Dec. 2015,
doi: 10.1016/j.asoc.2015.05.001.
[20] M. Altini, J. Penders, R. Vullers, and O. Amft, ‘‘Estimating energy
expenditure using body-worn accelerometers: A comparison of methods, sensors number and positioning,’’ IEEE J. Biomed. Health Inform.,
vol. 19, no. 1, pp. 219–226, Jan. 2015, doi: 10.1109/JBHI.2014.2313039.
[21] M. Gjoreski, H. Gjoreski, M. Lutrek, and M. Gams, ‘‘Automatic detection of perceived stress in campus students using smartphones,’’ in
Proc. Int. Conf. Intell. Environ., Jul. 2015, pp. 132–135, doi: 10.1109/
IE.2015.27.
[22] H. Alemdar, C. Tunca, and C. Ersoy, ‘‘Daily life behaviour monitoring for health assessment using machine learning: Bridging the
gap between domains,’’ Pers. Ubiquitous Comput., vol. 19, no. 2,
pp. 303–315, Feb. 2015, doi: 10.1007/s00779-014-0823-y.
[23] D. Cook, A. S. Crandall, B. L. Thomas, and N. C. Krishnan, ‘‘CASAS:
A smart home in a box,’’ Computer, vol. 46, no. 7, pp. 62–69, Jul. 2013,
doi: 10.1109/MC.2012.328.
[24] R. Chavarriaga et al., ‘‘The opportunity challenge: A benchmark
database for on-body sensor-based activity recognition,’’ Pattern
Recognit. Lett., vol. 34, no. 15, pp. 2033–2042, Nov. 2013,
doi: 10.1016/j.patrec.2012.12.014.
[25] N. Kawaguchi et al., ‘‘HASC Challenge: Gathering large scale human
activity corpus for the real-world activity understandings,’’ in Proc.
2nd Augmented Hum. Int. Conf. AH, 2011, pp. 1–5, doi: 10.1145/
1959826.1959853.
[26] B. Kaluža, S. Kozina, and M. Luštrek, ‘‘The activity recognition repository: Towards competitive benchmarking in ambient intelligence,’’
in Proc. AAAI Activity Context Represent., Techn. Lang., Jan. 2012,
pp. 44–47.
[27] H. Gjoreski et al., ‘‘Competitive live evaluations of activity-recognition
systems,’’ IEEE Pervasive Comput., vol. 14, no. 1, pp. 70–77,
Jan./Mar. 2015, doi: 10.1109/MPRV.2015.3.
[28] B. Chikhaoui and F. Gouineau, ‘‘Towards automatic feature extraction for
activity recognition from wearable sensors: A deep learning approach,’’ in
Proc. IEEE Int. Conf. Data Mining Workshops (ICDMW), New Orleans,
LA, USA, Nov. 2017, pp. 693–702, doi: 10.1109/ICDMW.2017.97.
[29] L. G. Fahad, S. F. Tahir, and M. Rajarajan, ‘‘Feature selection
and data balancing for activity recognition in smart homes,’’ in
Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2015, pp. 512–517,
doi: 10.1109/ICC.2015.7248373.
[30] F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy, ‘‘Berkeley
MHAD: A comprehensive multimodal human action database,’’ in Proc.
IEEE Workshop Appl. Comput. Vis. (WACV), Jan. 2013, pp. 53–60,
doi: 10.1109/WACV.2013.6474999.
[31] M. Zhang and A. A. Sawchuk, ‘‘USC-HAD: A daily activity dataset
for ubiquitous activity recognition using wearable sensors,’’ in Proc.
ACM Conf. Ubiquitous Comput. (UbiComp), Sep. 2012, pp. 1036–1043,
doi: 10.1145/2370216.2370438.
[32] B. Bruno, F. Mastrogiovanni, A. Sgorbissa, T. Vernazza, and R. Zaccaria,
‘‘Analysis of human behavior recognition algorithms based on acceleration data,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2013,
pp. 1602–1607, doi: 10.1109/ICRA.2013.6630784.
[33] C. Chen, R. Jafari, and N. Kehtarnavaz, ‘‘UTD-MHAD: A multimodal
dataset for human action recognition utilizing a depth camera and a
wearable inertial sensor,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP),
Sep. 2015, pp. 168–172, doi: 10.1109/ICIP.2015.7350781.
[34] K. Altun, B. Barshan, and O. Tunçel, ‘‘Comparative study on classifying human activities with miniature inertial and magnetic sensors,’’ Pattern Recognit., vol. 43, no. 10, pp. 3605–3620, Oct. 2010,
doi: 10.1016/j.patcog.2010.04.019.
[35] M. Elhoushi, J. Georgy, A. Noureldin, and M. J. Korenberg, ‘‘A survey on approaches of motion mode recognition using sensors,’’ IEEE
Trans. Intell. Transp. Syst., vol. 18, no. 7, pp. 1662–1686, Jul. 2017,
doi: 10.1109/TITS.2016.2617200.
[36] X. Yang and J. Lianwen, ‘‘A naturalistic 3D acceleration-based activity dataset & benchmark evaluations,’’ Proc. IEEE Int. Conf. Syst.,
Man Cybern., Oct. 2010, pp. 4081–4085, doi: 10.1109/ICSMC.2010.
5641790.
[37] J. M. Alcalá, J. Ureña, A. Hernández, and D. Gualda, ‘‘Assessing human
activity in elderly people using non-Intrusive load monitoring,’’ Sensors,
vol. 17, no. 2, p. 351, Feb. 2017, doi: 10.3390/s17020351.
[38] G. Chen, A. Wang, S. Zhao, L. Liu, and C.-Y. Chang, ‘‘Latent feature
learning for activity recognition using simple sensors in smart homes,’’
Multimedia Tools Appl., vol. 77, no. 12, pp. 15201–15219, Jun. 2018,
doi: 10.1007/s11042-017-5100-4.
[39] T. Nef et al., ‘‘Evaluation of three state-of-the-art classifiers for recognition of activities of daily living from smart home ambient data,’’ Sensors,
vol. 15, no. 5, pp. 11725–11740, May 2015, doi: 10.3390/s150511725.
[40] J. P. Zimmermann et al., ‘‘Household electricity survey: A study
of domestic electrical product usage,’’ Intertek, London, U.K., Tech.
Rep. R66141, May 2012, p. 600.
[41] J. Kelly and W. Knottenbelt, ‘‘The UK-DALE dataset, domestic
appliance-level electricity demand and whole-house demand from
five UK homes,’’ Sci. Data, vol. 2, Mar. 2015, Art. no. 150007,
doi: 10.1038/sdata.2015.7.
[42] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, ‘‘Systematic literature reviews in software engineering
—A systematic literature review,’’ Inf. Softw. Technol., vol. 51, no. 1,
pp. 7–15, Jan. 2009, doi: 10.1016/j.infsof.2008.09.009.
[43] C. Manterola, P. Astudillo, E. Arias, and N. Claros, ‘‘Systematic reviews
of the literature: What should be known about them,’’ Cirugía Española,
vol. 91, no. 3, pp. 149–155, Mar. 2013, doi: 10.1016/j.ciresp.2011.07.009.
[44] L. García-Pérez et al., ‘‘Systematic review of health-related utilities in
Spain: the case of mental health,’’ Gaceta Sanitaria, vol. 28, no. 1,
pp. 77–83, May 2013, doi: 10.1016/j.gaceta.2013.04.006.
[45] C. A. Merlano-Porras and L. Gorbanev, ‘‘Health system in Colombia:
A systematic review of literature,’’ Revista Gerencia Políticas Salud,
vol. 12, no. 24, pp. 74–86, Jan./Jun. 2013.
[46] A. Sanchez, D. Neira, and J. J. Cabello, ‘‘Frameworks
applied in quality management—A systematic review,’’ Rev.
Espacios, vol. 37, no. 9, p. 17, Jan. 2016. [Online]. Available:
http://www.revistaespacios.com/a16v37n09/16370917.html
[47] M. E. Grams et al., ‘‘Validation of CKD and related conditions in existing
data sets: A systematic review,’’ Amer. J. Kidney Diseases, vol. 57, no. 1,
pp. 44–54, Jan. 2011, doi: 10.1053/j.ajkd.2010.05.013.
[48] C. Nugent et al., ‘‘An initiative for the creation of open datasets within
pervasive healthcare,’’ in Proc. 10th EAI Int. Conf. Pervasive Comput. Technol. Healthcare, Cancun, Mexico, May 2016, pp. 318–321,
doi: 10.4108/eai.16-5-2016.2263830.
[49] S. K. Das and D. J. Cook, ‘‘Designing smart environments: A paradigm
based on learning and prediction,’’ in Pattern Recognition and Machine
Intelligence (Lecture Notes in Computer Science), vol. 3776, S. K. Pal,
S. Bandyopadhyay, and S. Biswas, Eds. Berlin, Germany: Springer, 2005,
pp. 80–90, doi: 10.1007/11590316_11.
[50] ICPSR dataset. Inst. Social Res., Univ. Michigan, Ann Arbor,
MI, USA. Accessed: Jul. 31, 2018. [Online]. Available:
https://www.icpsr.umich.edu/icpsrweb/content/about
[51] IRBS. International Review Boards. Accessed: Jul. 31, 2018. [Online].
Available: https://www.icpsr.umich.edu/icpsrweb/ICPSR/irb/index.jsp
[52] N. D. Rodríguez, M. P. Cuéllar, J. Lilius, and M. D. Calvo-Flores,
‘‘A fuzzy ontology for semantic modelling and recognition of human
behaviour,’’ Knowl.-Based Syst., vol. 66, pp. 46–60, Aug. 2014,
doi: 10.1016/j.knosys.2014.04.016.
[53] F. J. Quesada, F. Moya, J. Medina, L. Martínez, C. Nugent, and
M. Espinilla, ‘‘Generation of a partitioned dataset with single, interleave
and multioccupancy daily living activities,’’ in Proc. Int. Conf. Ubiquitous
Comput. Ambient Intell. Cham, Switzerland: Springer, 2015, pp. 60–71,
doi: 10.1007/978-3-319-26401-1_6.
[54] D. Cook, M. Schmitter-Edgecombe, A. Crandall, C. Sanders, and
B. Thomas, ‘‘Collecting and disseminating smart home sensor data in
the CASAS project,’’ in Proc. CHI Workshop Developing Shared Home
Behav. Datasets Adv. HCI Ubiquitous Comput. Res., 2009, pp. 1–7.
[55] G. Singla, D. J. Cook, and M. Schmitter-Edgecombe, ‘‘Tracking activities
in complex settings using smart environment technologies,’’ Int. J. Biosci.
Psychiatry Technol., vol. 1, no. 1, pp. 25–35, Jan. 2009.
[56] UCI Machine Learning Repository. Accessed: Jul. 31, 2018. [Online].
Available: https://archive.ics.uci.edu/ml/index.php
[57] T. L. M. van Kasteren, G. Englebienne, and B. J. A. Kröse, ‘‘Activity recognition using semi-Markov models on real world smart home
datasets,’’ J. Ambient Intell. Smart Environ., vol. 2, no. 3, pp. 311–325,
Aug. 2010, doi: 10.3233/AIS-2010-0070.
[58] D. Cook, ‘‘Learning setting-generalized activity models for smart
spaces,’’ IEEE Intell. Syst., vol. 27, no. 1, pp. 32–38, Jan./Feb. 2012,
doi: 10.1109/MIS.2010.112.
[59] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, ‘‘A public domain dataset for human activity recognition using smartphones,’’
in Proc. 21th Eur. Symp. Artif. Neural Netw., Comput. Intell. Mach.
Learn. (ESANN), Bruges, Belgium, Apr. 2013, pp. 437–442.
[60] C. A. Ronao and S.-B. Cho, ‘‘Human activity recognition using smartphone sensors with two-stage continuous hidden Markov models,’’
in Proc. 10th Int. Conf. Nat. Comput., Aug. 2014, pp. 681–686,
doi: 10.1109/ICNC.2014.6975918.
[61] D. Roggen et al., ‘‘Collecting complex activity datasets in highly rich
networked sensor environments,’’ in Proc. 7th Int. Conf. Netw. Sens. Syst.,
Jun. 2010, pp. 233–240, doi: 10.1109/INSS.2010.5573462.
[62] P. Lukowicz et al., ‘‘Recording a complex, multi modal activity data
set for context recognition,’’ in Proc. 23th Int. Conf. Archit. Comput.
Syst., Feb. 2010, pp. 1–6. Accessed: Jul. 31, 2018. [Online]. Available:
http://www.opportunity-project.eu/challengeDataset
[63] O. Banos et al., ‘‘mHealthDroid: A novel framework for agile development of mobile health applications,’’ in Proc. 6th Int. Workshop Conf.
Ambient Assist. Living (IWAAL), Belfast, U.K., Dec. 2014, pp. 91–98,
doi: 10.1007/978-3-319-13105-4_14.
[64] A. Shahi, J. D. Deng, and B. J. Woodford, ‘‘A streaming ensemble
classifier with multi-class imbalance learning for activity recognition,’’ in
Proc. Int. Joint Conf. Neural Netw. (IJCNN), May 2017, pp. 3983–3990.
[65] M. H. Kabir, M. R. Hoque, K. Thapa, and S.-H. Yang, ‘‘Two-layer
hidden Markov model for human activity recognition in home environments,’’ Int. J. Distrib. Sensor Netw., vol. 12, no. 1, p. 4560365, 2016,
doi: 10.1155/2016/4560365.
[66] H. Fang, R. Srinivasan, and D. J. Cook, ‘‘Feature selections for human
activity recognition in smart home environments,’’ Int. J. Innov. Comput.,
Inf. Control, vol. 8, no. 5B, pp. 3525–3535, May 2012.
[67] A. Shahi, B. J. Woodford, and H. Lin, ‘‘Dynamic real-time segmentation
and recognition of activities using a multi-feature windowing approach,’’
in Proc. PAKDD Workshops, Jeju, South Korea, vol. 10526, U. Kang, ed.
Cham, Switzerland: Springer, 2017, pp. 26–38, doi: 10.1007/978-3-319-
67274-8_3
[68] I. Fatima, M. Fahim, Y.-K. Lee, and S. Lee, ‘‘Effects of smart home
dataset characteristics on classifiers performance for human activity
recognition,’’ in Computer Science and Its Applications (Lecture Notes
in Electrical Engineering), vol. 203, S.-S. Yeo ed. 2012, pp. 271–281,
doi: 10.1007/978-94-007-5699-1_28.[69] N. Twomey, T. Diethe, I. Craddock, and P. Flach, ‘‘Unsupervised learning of sensor topologies for improving activity recognition in smart
environments,’’ Neurocomputing, vol. 234, pp. 93–106, Apr. 2017,
doi: 10.1016/j.neucom.2016.12.049.
[70] N. K. Suryadevara, S. C. Mukhopadhyay, R. Wang, and R. K. Rayudu,
‘‘Forecasting the behavior of an elderly using wireless sensors data in a
smart home,’’ Eng. Appl. Artif. Intell., vol. 26, no. 10, pp. 2641–2652,
2013, doi: 10.1016/j.engappai.2013.08.004.
[71] K. Amphawan, J. Soulas, and P. Lenca, ‘‘Mining top-k regular episodes
from sensor streams,’’ Procedia Comput. Sci., no. 69, pp. 76–85,
Nov. 2015, doi: 10.1016/j.procs.2015.10.008.
[72] J. W. Lee, A. Helal, Y. Sung, and K. Cho, ‘‘Context-driven control
algorithms for scalable simulation of human activities in smart homes,’’
in Proc. IEEE 10th Int. Conf. Ubiquitous Intell. Comput., Dec. 2013,
pp. 285–292, doi: 10.1109/UIC-ATC.2013.68.
[73] S. S. Akter and L. B. Holder, ‘‘Activity recognition using graphical
features,’’ in Proc. 13th Int. Conf. Mach. Learn. Appl., Dec. 2014,
pp. 165–170, doi: 10.1109/ICMLA.2014.31.
[74] T. R. Bandaragoda, K. M. Ting, D. Albrecht, F. T. Liu, and
J. R. Wells, ‘‘Efficient anomaly detection by isolation using nearest
neighbour ensemble,’’ in Proc. IEEE Int. Conf. Data Mining Workshop,
Dec. 2014, pp. 698–705, doi: 10.1109/ICDMW.2014.70.
[75] T. Chanyaswad, J. M. Chang, and S. Y. Kung, ‘‘A compressive multikernel method for privacy-preserving machine learning,’’ in Proc. Int.
Joint Conf. Neural Netw. (IJCNN), May 2017, pp. 4079–4086.
[76] J. Wen and Z. Wang, ‘‘Sensor-based adaptive activity recognition with
dynamically available sensors,’’ Neurocomputing, vol. 218, pp. 307–317,
Dec. 2016, doi: 10.1016/j.neucom.2016.08.077.
[77] D. Acharjee, A. Mukherjee, J. K. Mandal, and N. Mukherjee, ‘‘Activity
recognition system using inbuilt sensors of smart mobile phone and minimizing feature vectors,’’ in Microsystem Technologies. Berlin, Germany:
Springer-Verlag, 2015, doi: 10.1007/s00542-015-2551-2.
[78] Y.-J. Kim, Y. Kim, J. Ahn, and D. Kim, ‘‘Integrating hidden Markov models based on mixture-of-templates and k-NN2
ensemble for activity recognition,’’ in Proc. 23rd Int. Conf. Pattern Recognit. (ICPR), Dec. 2016,
pp. 1636–1641.
[79] B. Bruno, F. Mastrogiovanni, and A. Sgorbissa, ‘‘A public domain
dataset for ADL recognition using wrist-placed accelerometers,’’ in
Proc. 23rd IEEE Int. Symp. Robot Hum. Interact. Commun., Aug. 2014,
pp. 738–743,
[80] O. Banos et al., ‘‘Design, implementation and validation of a novel
open framework for agile development of mobile health applications,’’
BioMed. Eng. OnLine, vol. 14, nos. S2–S6, pp. 1–20, 2015.
[81] S. A. Khowaja, B. N. Yahya, and S.-L. Lee, ‘‘Hierarchical classification
method based on selective learning of slacked hierarchy for activity
recognition systems,’’ Expert Syst. Appl., vol. 88, pp. 165–177, Dec. 2017,
doi: 10.1016/j.eswa.2017.06.040.
[82] S. Ha and S. Choi, ‘‘Convolutional neural networks for human activity
recognition using multiple accelerometer and gyroscope sensors,’’ in
Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2016, pp. 381–388.
[83] J. Saives, C. Pianon, and G. Faraut, ‘‘Activity discovery and detection
of behavioral deviations of an inhabitant from binary sensors,’’ IEEE
Trans. Autom. Sci. Eng., vol. 12, no. 4, pp. 1211–1224, Oct. 2015,
doi: 10.1109/TASE.2015.2471842.
[84] D. I. Kim and E. Martinson, ‘‘Human centric spatial affordances
for improving human activity recognition,’’ in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS), Oct. 2016, pp. 725–730,
doi: 10.1109/IROS.2016.7759132.
[85] A. K. Ramakrishnan, D. Preuveneers, and Y. Berbers, ‘‘A loosely coupled and distributed Bayesian framework for multi-context recognition
in dynamic ubiquitous environments,’’ in Proc. IEEE 10th Int. Conf.
Ubiquitous Intell. Comput. and IEEE 10th Int. Conf. Autonomic Trusted
Comput., Dec. 2013, pp. 270–277, doi: 10.1109/UIC-ATC.2013.66.
[86] R. Fallahzadeh and H. Ghasemzadeh, ‘‘Personalization without user interruption: Boosting activity recognition in new subjects using unlabeled
data,’’ in Proc. ACM/IEEE 8th Int. Conf. Cyber-Phys. Syst. (ICCPS),
Apr. 2017, pp. 293–302, doi: 10.1145/3055004.3055015.
[87] A. S. Billis et al., ‘‘A decision-support framework for promoting independent living and ageing well,’’ IEEE J. Biomed. Health Inform., vol. 19,
no. 1, pp. 199–209, Jan. 2015, doi: 10.1109/JBHI.2014.2336757.
[88] E. E. Stone and M. Skubic, ‘‘Mapping kinect-based in-home gait speed
to TUG time: A methodology to facilitate clinical interpretation,’’ in
Proc. 7th Int. Conf. Pervasive Comput. Technol. Healthcare Workshops,
May 2013, pp. 57–64, doi: 10.4108/icst.pervasivehealth.2013.252097.
[89] S. Basterrech and V. K. Ojha, ‘‘Temporal learning using echo state
network for human activity recognition,’’ in Proc. 3rd Eur. Netw. Intell.
Conf. (ENIC), Sep. 2016, pp. 217–223, doi: 10.1109/ENIC.2016.039.
[90] Y.-H. Chen, C.-H. Lu, K.-C. Hsu, L.-C. Fu, Y.-J. Yeh, and L.-C. Kuo,
‘‘Preference model assisted activity recognition learning in a smart
home environment,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Oct. 2009, pp. 4657–4662, doi: 10.1109/IROS.2009.5353937.
[91] J. Soulas, P. Lenca, and A. Thépaut, ‘‘Unsupervised discovery of
activities of daily living characterized by their periodicity and variability,’’ Eng. Appl. Artif. Intell., vol. 45, pp. 90–102, Oct. 2015,
doi: 10.1016/j.engappai.2015.06.006.
[92] M. Ros, M. Delgado, A. Vila, H. Hagras, and A. Bilgin, ‘‘A fuzzy logic
approach for learning daily human activities in an ambient intelligent
environment,’’ in Proc. IEEE Int. Conf. Fuzzy Syst., Jun. 2012, pp. 1–8,
doi: 10.1109/FUZZ-IEEE.2012.6250770.
[93] J. Kavya and M. Geetha, ‘‘An FSM based methodology for interleaved and concurrent activity recognition,’’ in Proc. Int. Conf. Adv.
Comput., Commun. Informat. (ICACCI), Sep. 2016, pp. 994–999,
doi: 10.1109/ICACCI.2016.7732174.
[94] Y.-P. Huang and S.-R. Chen, ‘‘A fuzzy approach to discriminating heartbeat types and detecting arrhythmia,’’ in Proc. Int. Conf. Fuzzy Theory
Appl., Nov. 2012, pp. 327–332, doi: 10.1109/iFUZZY.2012.6409725.
[95] N. Pathak, N. Roy, and A. Biswas, ‘‘Iterative signal separation assisted
energy disaggregation,’’ in Proc. 6th Int. Green Sustain. Comput.
Conf. (IGSC), Dec. 2015, pp. 1–8, doi: 10.1109/IGCC.2015.7393701.
[96] G. Acampora and A. Vitiello, ‘‘Interoperable neuro-fuzzy services
for emotion-aware ambient intelligence,’’ Neurocomputing, vol. 122,
pp. 3–12, Dec. 2013, doi: 10.1016/j.neucom.2013.01.046.
[97] J. Shell and S. Coupland, ‘‘Improved decision making using fuzzy
temporal relationships within intelligent assisted living environments,’’
in Proc. 7th Int. Conf. Intell. Environ., Jul. 2011, pp. 149–156,
doi: 10.1109/IE.2011.30.
[98] N. Oukrich, A. Maach, E. Sabri, E. Mabrouk, and K. Bouchard, ‘‘Activity
recognition using back-propagation algorithm and minimum redundancy
feature selection method,’’ in Proc. 4th IEEE Int. Colloq. Inf. Sci. Technol. (CiSt), Oct. 2016, pp. 818–823, doi: 10.1109/CIST.2016.7805000.
[99] S. Soviany and S. Puscoci, ‘‘A hierarchical decision system for
human behavioral recognition,’’ in Proc. 7th Int. Conf. Electron., Comput. Artif. Intell. (ECAI), Jun. 2015, pp. S-79–S-84, doi: 10.1109/
ECAI.2015.7301165.
[100] K. Bouchard et al., ‘‘Unsupervised spatial data mining for smart homes,’’
in Proc. IEEE Int. Conf. Data Mining Workshop (ICDMW), Nov. 2015,
pp. 1433–1440, doi: 10.1109/ICDMW.2015.126.
[101] H. Zheng, H. Wang, and N. Black, ‘‘Human activity detection in smart
home environment with self-adaptive neural networks,’’ in Proc. IEEE
Int. Conf. Netw., Sens. Control (ICNSC), Apr. 2008, pp. 1505–1510,
doi: 10.1109/ICNSC.2008.4525459.
[102] X. Zhang, G.-B. Kim, Y. Xia, and H.-Y. Bae, ‘‘Human activity recognition with trajectory data in multi-floor indoor environment,’’ in Proc.
Int. Conf. Rough Sets Knowl. Technol., in Lecture Notes in Computer
Science, Chengdu, China, vol. 7414. Berlin, Germany: Springer, 2012,
pp. 257–266, doi: 10.1007/978-3-642-31900-6_33.
[103] R. C. Kumar, S. S. Bharadwaj, B. N. Sumukha, and K. George, ‘‘Human
activity recognition in cognitive environments using sequential ELM,’’ in
Proc. 2nd Int. Conf. Cognit. Comput. Inf. Process. (CCIP), Aug. 2016,
pp. 1–6. doi: 10.1109/CCIP.2016.7802880.
[104] R. Kumar, I. Qamar, J. S. Virdi, and N. C. Krishnan, ‘‘Multi-label learning
for activity recognition,’’ in Proc. Int. Conf. Intell. Environ., Jul. 2015,
pp. 152–155, doi: 10.1109/IE.2015.32.
[105] C. Bhadrachalam, T. Jyothi, and T. S. Indulekha, ‘‘New approaches
for discovering unsupervised human activities by mining sensor data,’’
in Proc. Int. Conf. Comput. Netw. Commun. (CoCoNet), Dec. 2015,
pp. 118–123, doi: 10.1109/CoCoNet.2015.7411176.
[106] A. Aztiria, G. Farhadi, and H. Aghajan, ‘‘User behavior shift detection in
ambient assisted living environments,’’ J. Med. Internet Res., vol. 1, no. 1,
p. e6, Jan./Jun. 2013, doi: 10.2196/mhealth.2536.
[107] L. G. Fahad, S. F. Tahir, and M. Rajarajan, ‘‘Activity recognition in smart
homes using clustering based classification,’’ in Proc. 22nd Int. Conf. Pattern Recognit., Aug. 2014, pp. 1348–1353, doi: 10.1109/ICPR.2014.241.
[108] E. Hoque and J. Stankovic, ‘‘AALO: Activity recognition in
smart homes using active learning in the presence of overlapped
activities,’’ in Proc. 6th Int. Conf. Pervasive Comput. Technol.
Healthcare (PervasiveHealth) Workshops, May 2012, pp. 139–146,
doi: 10.4108/icst.pervasivehealth.2012.248600.109] V. Ghasemi and A. K. Pouyan, ‘‘Activity recognition in smart homes using
absolute temporal information in dynamic graphical models,’’ in Proc.
10th Asian Control Conf., May/Jun. 2015, pp. 1–6.
[110] P. Kodeswaran, R. Kokku, M. Mallick, and S. Sen, ‘‘Demultiplexing
activities of daily living in IoT enabled smarthomes,’’ in Proc. 35th Annu.
IEEE Int. Conf. Comput. Commun., Apr. 2016, pp. 1–9.
[111] J. L. G. Ortega, L. Han, N. Whittacker, and N. Bowring, ‘‘A machinelearning based approach to model user occupancy and activity patterns
for energy saving in buildings,’’ in Proc. Sci. Inf. Conf., London, U.K.,
Jul. 2015, pp. 474–482.
[112] U. Avci and A. Passerini, ‘‘Improving activity recognition by segmental
pattern mining,’’ in Proc. 8th IEEE Int. Conf. Pervasive Comput. Commun. Workshops, Mar. 2012, pp. 709–714.
[113] H. Alemdar, T. L. M. van Kasteren, M. E. Niessen, A. Merentitis, and
C. Ersoy, ‘‘A unified model for human behavior modeling using a hierarchy with a variable number of states,’’ in Proc. 22nd Int. Conf. Pattern
Recognit., Aug. 2014, pp. 3804–3809, doi: 10.1109/ICPR.2014.653.
[114] M. B. Abidine, B. Fergani, and L. Clavier, ‘‘Importance-weighted the
imbalanced data for C-SVM classifier to human activity recognition,’’ in
Proc. 8th Int. Workshop Syst., Signal Process. Appl. (WoSSPA), May 2013,
pp. 330–335.
[115] M. B. Abidine and B. Fergani, ‘‘Evaluating a new classification method
using PCA to human activity recognition,’’ in Proc. Int. Conf. Comput.
Med. Appl. (ICCMA), Jan. 2013, pp. 1–4.
[116] X. Hong, C. D. Nugent, M. D. Mulvenna, S. Martin, S. Devlin, and
J. G. Wallace, ‘‘Dynamic similarity-based activity detection and recognition within smart homes,’’ Int. J. Pervasive Comput. Commun., vol. 8,
no. 3, pp. 264–278, 2012, doi: 10.1108/17427371211262653.
[117] V. Ghasemi, A. A. Pouyan, and M. Sharifi, ‘‘Human activity recognition
in smart homes based on a difference of convex programming problem,’’
KSII Trans. Internet Inf. Syst., vol. 11, no. 1, pp. 321–344, Jan. 2017,
doi: 10.3837/tiis.2017.01.017.
[118] F. A. Machot and H. C. Mayr, ‘‘Improving human activity recognition
by smart windowing and spatio-temporal feature analysis,’’ in Proc. 9th
ACM Int. Conf. Pervasive Technol. Rel. Assistive Environ., 2016, p. 56,
doi: 10.1145/2910674.2910697.
[119] F. A. Machot, H. C. Mayr, and S. Ranasinghe, ‘‘A windowing approach for activity recognition in sensor data streams,’’ in
Proc. 8th Int. Conf. Ubiquitous Future Netw. (ICUFN), Jul. 2016,
pp. 951–953.
[120] A. De Paola et al., ‘‘An ambient intelligence system for assisted living,’’
in Proc. AEIT Int. Annu. Conf., Sep. 2017, pp. 1–6.
[121] N. Yala, B. Fergani, and A. Fleury, ‘‘Feature extractionand incremental learning to improve activity recognition on streaming data,’’ in
Proc. IEEE Int. Conf. Evolving Adapt. Intell. Syst. (EAIS), Dec. 2015,
pp. 1–8.
[122] R. Mohamed, T. Perumal, N. Sulaiman, N. Mustapha, and M. N. Razali,
‘‘Conflict resolution using enhanced label combination method for complex activity recognition in smart home environment,’’ in Proc. IEEE 6th
Global Conf. Consum. Electron. (GCCE), Oct. 2017, pp. 1–3.
[123] S. Ntalampiras and M. Roveri, ‘‘An incremental learning mechanism for
human activity recognition,’’ in Proc. IEEE Symp. Ser. Comput. Intell.,
Dec. 2016, pp. 1–6.
[124] C. A. Ronao and S.-B. Cho, ‘‘Human activity recognition using smartphone sensors with two-stage continuous hidden Markov models,’’ in
Proc. 10th Int. Conf. Natural Comput., Aug. 2014, pp. 681–686.
[125] E. Garcia-Ceja and R. F. Brena, ‘‘An improved three-stage classifier for
activity recognition,’’ Int. J. Pattern Recognit. Artif. Intell., vol. 32, no. 1,
p. 1860003, 2018, doi: 10.1142/S0218001418600030.
[126] J. Cumin, G. Lefebvre, F. Ramparany, and J. L. Crowley, ‘‘Human activity
recognition using place-based decision fusion in smart home,’’ Arch.
Ouverte HAL, Tech. Rep., 2017.
[127] G. Chetty and M. White, ‘‘Body sensor networks for human activity
recognition,’’ in Proc. 3rd Int. Conf. Signal Process. Integr. Netw. (SPIN),
Noida, India, Feb. 2016, pp. 660–665, doi: 10.1109/SPIN.2016.7566779.
[128] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
‘‘SMOTE: Synthetic minority over-sampling technique,’’ J. Artif. Intell.
Res., vol. 16, no. 1, pp. 321–357, 2002.
[129] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz,
‘‘Human activity recognition on smartphones using a multiclass
hardware-friendly support vector machine,’’ in Proc. Int. Workshop
Ambient Assist. Living (IWAAL), Vitoria-Gasteiz, Spain, Dec. 2012,
pp. 216–223.
[130] E. de la Hoz, E. de la Hoz, A. Ortiz, J. Ortega, and
A. Martínez-Álvarez, ‘‘Feature selection by multi-objective optimisation:
Application to network anomaly detection by hierarchical selforganising maps,’’ Knowl.-Based Syst., vol. 71, pp. 322–338, Nov. 2014,
doi: 10.1016/j.knosys.2014.08.013.
[131] F. Mendoza, A. De-La-Hoz-Manotas, E. De-La-Hoz-Franco, and
P. Ariza-Colpas, ‘‘Feature selection, learning metrics and dimension reduction in training and classification processes in intrusion
detection systems,’’ J. Theor. Appl. Inf. Technol., vol. 82, no. 2,
pp. 291–298, Dec. 2015. Accessed: Jul. 31, 2018. [Online]. Available:
http://www.jatit.org/volumes/Vol82No2/12Vol82No2.pdf
[132] E. De-La-Hoz-Franco, A. Ortiz, J. Ortega, E. De-La-Hoz-Correa, and
F. Mendoza, ‘‘Implementation of an intrusion detection system based
on self organizing map,’’ J. Theor. Appl. Inf. Technol., vol. 71, no. 3,
pp. 324–334, Jan. 2015. Accessed: Jul. 31, 2018. [Online]. Available:
http://www.jatit.org/volumes/Vol71No3/2Vol71No3.pdf | |