Artículo de revista
Euler matrices and their algebraic properties revisited
Registro en:
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
Autor
Quintana, Yamilet
Ramírez, William
Urieles, Alejandro
Institución
Resumen
This paper addresses the generalized Euler polynomial matrix E (α) (x) and the Euler matrix E . Taking into account some properties of Euler polynomials and numbers, we deduce product formulae for E (α) (x) and define the inverse matrix of E . We establish some explicit expressions for the Euler polynomial matrix E (x), which involves the generalized Pascal, Fibonacci and Lucas matrices, respectively. From these formulae, we get some new interesting identities involving Fibonacci and Lucas numbers. Also, we provide some factorizations of the Euler polynomial matrix in terms of Stirling matrices, as well as a connection between the shifted Euler matrices and Vandermonde matrices.
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Euler matrices and their algebraic properties revisited
Quintana, Yamilet; Ramírez, William; Urieles -
Generalized apostol-type polynomial matrix and its algebraic properties
Quintana, Yamilet; Ramírez, William; Urieles Guerrero, Alejandro -
Changes In Mmps And Inflammatory Cells In Experimental Gingivitis.
Lorencini, Márcio; Silva, Juliete A F; de la Hoz, Cristiane L R; Carvalho, Hernandes F; Stach-Machado, Dagmar R