dc.creatorQuintana, Yamilet
dc.creatorRamírez, William
dc.creatorUrieles, Alejandro
dc.date2020-06-19T04:52:18Z
dc.date2020-06-19T04:52:18Z
dc.date2020
dc.date.accessioned2023-10-03T19:09:55Z
dc.date.available2023-10-03T19:09:55Z
dc.identifierhttps://hdl.handle.net/11323/6387
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9168428
dc.descriptionThis paper addresses the generalized Euler polynomial matrix E (α) (x) and the Euler matrix E . Taking into account some properties of Euler polynomials and numbers, we deduce product formulae for E (α) (x) and define the inverse matrix of E . We establish some explicit expressions for the Euler polynomial matrix E (x), which involves the generalized Pascal, Fibonacci and Lucas matrices, respectively. From these formulae, we get some new interesting identities involving Fibonacci and Lucas numbers. Also, we provide some factorizations of the Euler polynomial matrix in terms of Stirling matrices, as well as a connection between the shifted Euler matrices and Vandermonde matrices.
dc.formatapplication/pdf
dc.languageeng
dc.publisherApplied Mathematics and Information Sciences
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectEuler polynomials
dc.subjectEuler matrix
dc.subjectGeneralized Euler matrix
dc.subjectGeneralized Pascal matrix
dc.subjectFibonacci matrix
dc.subjectLucas matrix
dc.titleEuler matrices and their algebraic properties revisited
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución