Dissertação
Estudo teórico e computacional da estabilidade de fase cristalina e do mecanismo da ferroeletricidade da manganita hexagonal InMnO3
Registro en:
BISPO, José Genário Alves. Estudo teórico e computacional da estabilidade de fase cristalina e do mecanismo da ferroeletricidade da manganita hexagonal InMnO3. 2019. 70 f. Dissertação (Mestrado em Física) - Universidade Federal de Sergipe, São Cristóvão, SE, 2019.
Autor
Bispo, José Genário Alves
Institución
Resumen
In this work it was performed a thorough theoretical study of structural, electronic and magnetic properties of the h-InMnO3 hexagonal manganite compound. As a computational tool it was employed the Full Potential Linearized Augmented Plane Wave electronic structure method, which is based on Density Functional Theory and implemented into the WIEN2k computer code. Exchange and correlation effects between the electrons were treated by the Generalized Gradient Approximation (GGA) functional, with addition of the Hubbard Ueff correction in order to correctly describe highly correlated Mn d-electrons. Three crystalline phases of the h-InMnO3 have been considered: the ferroelectric (FE) one (space group P63cm) and the two paraelectric (PE) ones (P3̅c and P63/mmc). The main objective was to verify which of these three phases exhibits the lowest energy when subjected either to ambient conditions or to compressive and tensile external pressures. In addition, it was performed an analysis of electronic origin of the FE distortion of the studied material. The results show that in the case of the h-InMnO3 with experimentally determined structural parameters (lattice constants, atomic positions) the P3̅c crystalline phase is energetically the most favourable. However, after performing the computational relaxation of these parameters, utilizing Ueff = 4,0 eV, the energies of the P63cm and P3̅c phases have been found equal and identified as the lowest ones. This conclusion changes when the material is subjected to external pressure. Under compressive strain the P63cm phase is found to be more energetically favourable than the P3̅c phase, while under tensile strain the P3̅c become easier to form. Comparative analysis of electronic structures of different phases revealed that a modification of the degree of hybridization between the In dz2- and apical Oap 2pz-states, going from the PE to the FE phase, could be the electronic origin for the FE distortion of the material. However, this should not be the unique mechanism for stabilization of the FE phase of the h-InMnO3 at sufficiently low temperatures, since the hybridization between the In 5s- and the O 2p-states should also be partially responsible for it. Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq Neste trabalho, realizou-se um estudo teórico e computacional das propriedades estruturais, eletrônicas e magnéticas da manganita hexagonal h-InMnO3. Foram simuladas três fases cristalinas deste material, sendo uma delas ferroelétrica (FE) com grupo espacial P63cm e as outras duas paraelétricas (PE) cujos grupos espaciais são P3̅c e P63/mmc. Para esse estudo utilizou-se o método de cálculo de estrutura eletrônica denominado de Full Potential Linearized Augmented Plane Wave que é baseado na Teoria do Funcional da Densidade e implementado no código computacional WIEN2k. Foram simuladas estruturas magnéticas colineares do tipo ferromagnéticas e antiferromagnética. Para os efeitos de troca e correlação eletrônica utilizou-se o funcional GGA. Porém, para uma melhor descrição dos efeitos de troca e correlação eletrônica nos estados 3d do Mn, foi empregado o método +Ueff (GGA+ Ueff). O objetivo principal com a realização desses cálculos foi avaliar qual das fases cristalinas (P63cm, P3̅c e P63/mmc) do h-InMnO3 é energeticamente favorável quando a célula unitária do material é livre de condições externas e sob aplicação de tensão e compressão. Além disso, foi analisada a origem eletrônica da distorção FE do material em estudo. Os resultados revelaram que para as posições atômicas não relaxadas, a fase cristalina P3̅c é a energeticamente mais favorável. Porém, após a relaxação das posições atômicas do material, para os resultados com Ueff = 4,0 eV, foi obtido que as fases P63cm e P3̅c tem mesma energia. Esse último resultado não se mantém sob condições externas. Sob compressão, a fase P63cm é mais energeticamente favorável do que a fase P3̅c e sob tensão a fase P3̅c se torna mais fácil de se formar. A análise comparativa da estrutura eletrônica das diferentes fases mostram que a modificação na hibridização dos estados 4dz2 do In com os estados 2pz do Oap da fase FE para a PE pode ser a origem eletrônica para a distorção FE do material. Porém, esse mecanismo não deve ser o único e a hibridização dos estados 5s do In com os estados 2p dos oxigênios equatoriais também devem ser contados para a estabilidade da fase FE no h- InMnO3. São Cristóvão, SE