Dissertação
Argila montmorilonita modificada com complexos ferro-cyclam e catalisador de Jacobsen como modelo biomimético para oxidação de corantes têxteis
Modified montmorillonite clay with iron-cyclam and Jacobsen catalyst complexes as biomimetic model for textile dye oxidation
Registro en:
SANTOS, Synara Maria de Almeida. Argila montmorilonita modificada com complexos ferro-cyclam e catalisador de Jacobsen como modelo biomimético para oxidação de corantes têxteis. 2019. 63 f. Dissertação (Mestrado em Química) - Universidade Federal de Sergipe, São Cristóvão, SE, 2019.
Autor
Santos, Synara Maria de Almeida
Institución
Resumen
Studies show that the biotransformation of azo dyes may be responsible for the formation of amines, benzidines and other intermediates with carcinogenic and mutagenic potential. The formation of these products occurs via oxidation and / or reduction reactions catalyzed by cytochrome P450 (CYP450). However, due to difficulties in working with enzymes, the use of model compounds of CYP450 has been highlighted in studies of catalysis of several substances. The immobilization of these biomimetic catalysts in solid supports is a prominent area because, in addition to preventing the formation of inactive dimers and self- oxidation, it increases the catalytic activity and the selectivity of these reactions allowing the recovery and reuse of these catalysts. Among the various supports used, clays have stood out due to the advantages offered: cost, environmentally friendly and chemically stable. In this study, the biomimetic models of CYP450, cis-diclorocyclamferro (III) chloride (FeCy) and N, N'-bis (3,5-di-tert-butylsalicidene) -1,2-cyclohexanediaminomanganese (III) chloride (JBN) were immobilized on montmorillonite K10 (Mt) and montmorillonite sodium (Mt-Na+) and used to oxidize the orange reactive dye 16 (RL16). The catalysts obtained were quantified by flame atomic absorption spectrometry (FAAS), obtaining the values per support gram of 1.34x10-4 mol g-1 for FeCyMt, 1.93x10-4 mol g-1 for FeCyMt-Na+ and 3.07x10-6 mol g-1 for JBNMt-Na+ and surface area values of 245 m2 g-1 for FeCyMt, 314 m2 g-1 for FeCyMt-Na+ and 255 m2 g-1 for JBNMt-Na+. The Fourier Transform Infrared (FTIR) spectra of the supported materials revealed no changes in the vibrational stretches characteristic of montmorillonite. The images obtained by scanning electron microscopy (SEM) indicated the absence of modification of the surface of the montmorillonite after the immobilization of the catalysts. In the X-ray diffractograms (XRD), using the reflection plane (001), it was possible to observe an increase in the basal distances of montmorillonite after immobilization, thus confirming the presence of the catalysts in the interlamellar region. The thermal stability of the supported materials was verified through thermogravimetric curves. Subsequently, oxidation reactions of the reactive orange dye 16 (RO16) were performed at room temperature, using molar ratio 1: 5: 2500 (catalyst: substrate: oxidant) and quantity of catalyst of 2.0x10-7 for FeCyMt and FeCyMt-Na+ and 5.0x10-8 for JBNMt-Na+, using hydrogen peroxide as oxidant. Oxidation was monitored by UV-Vis molecular spectrophotometry in the time interval from 0 to 1440 minutes, by the disappearance of the absorption band at 492 nm. Oxidation studies were performed in aqueous, acid and basic medium. Reactions in aqueous medium and at pH 6, 8 and 10 showed no changes in the dye spectrum. At pH 2 and 4, the FeCyMt and FeCyMt-Na+ catalysts showed 100% oxidation in a time interval of 480 min for pH 2. For the catalyst JBNMt-Na+ there was 66% oxidation at pH 2. The FeCyMt, FeCyMt-Na+ and JBNMt-Na+ catalysts showed stability and efficiency in the oxidation reactions of the RO16 dye. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES Estudos mostram que a biotransformação de corantes azo pode ser responsável pela formação de aminas, benzidinas e outros intermediários com potencialidade carcinogênica e mutagênica. A formação desses produtos ocorre via reações de oxidação e/ou redução catalisadas pelo citocromo P450 (CYP450). Porém, devido às dificuldades em se trabalhar com enzimas, o uso de compostos modelos do CYP450 vem se destacando nos estudos de catálise de diversas substâncias. A imobilização desses catalisadores biomiméticos em suportes sólidos é uma área de destaque pois, além de prevenir a formação de dímeros inativos e a auto oxidação, aumenta a atividade catalítica e a seletividade dessas reações permitindo a recuperação e o reuso desses catalisadores. Dentre os diversos suportes utilizados, as argilas têm se destacado devido às vantagens oferecidas: custo, ambientalmente amigáveis e estáveis quimicamente. Neste trabalho, os modelos biomiméticos do CYP450, cloreto de cis-diclorocyclamferro(III) (FeCy) e cloreto de N,N'-bis(3,5-di-terc-butilsalicideno)-1,2-cicloexanodiaminomanganês(III) - catalisador de Jacobsen - (JBN), foram imobilizados em argila montmorilonita K10 (Mt) e montmorilonita sódica (Mt-Na+) e utilizados na oxidação do corante reativo laranja 16 (RL16). Os catalisadores obtidos foram quantificados por espectrometria de absorção atômica com chama (FAAS) obtendo os valores, por grama de suporte, de 1,34x10-4 mol g-1 para FeCyMt, 1,93x10-4 mol g-1 para o FeCyMt-Na+ e 3,07x10-6 mol g-1 para JBNMt-Na+ e valores de área superficial de 245 m2 g-1 para FeCyMt, 314 m2g-1 para FeCyMt-Na+ e 255 m2g-1 para JBNMt-Na+. Os espectros de Infravermelho com transformada de Fourier (FTIR) dos materiais suportados revelaram ausência de alterações dos estiramentos vibracionais característicos da montmorilonita. As imagens obtidas através da microscopia eletrônica de varredura (MEV) indicou a ausência de modificação da superfície da montmorilonita após a imobilização dos catalisadores. Nos difratogramas de raio X (DRX), utilizando o plano de reflexão (001) foi possível observar um aumento das distâncias basais da montmorilonita após a imobilização confirmando assim, a presença dos catalisadores na região interlamelar. A estabilidade térmica dos materiais suportados foi comprovada através das curvas termogravimétricas. Posteriormente foram realizadas as reações de oxidação do corante reativo laranja 16 (RL16), sob temperatura ambiente, utilizando razão molar 1: 5: 2500 (catalisador: substrato: oxidante) e quantidade de catalisador de 2,0x10-7 para FeCyMt e FeCyMt-Na+ e 5,0x10-8 para o JBNMt-Na+, utilizando peróxido de hidrogênio como oxidante.
A oxidação foi monitorada, por espectrofotometria UV-Vis molecular, no intervalo de tempo de 0 a 1440 minutos, pelo desaparecimento da banda de absorção em 492 nm. Os estudos da oxidação foram realizados em meio aquoso, ácido e básico. As reações em meio aquoso e em pH 6, 8 e 10 não apresentaram alterações no espectro do corante. Em pH 2 e 4, os catalisadores FeCyMt e FeCyMt-Na+ apresentaram 100% de oxidação em intervalo de tempo de 480 min para o pH 2. Para o catalisador JBNMt-Na+ houve oxidação de 66% em pH 2. Os catalisadores FeCyMt, FeCyMt-Na+ e JBNMt-Na+, apresentaram estabilidade e eficiência nas reações de oxidação do corante RL16. São Cristóvão, SE