Artigo de peri??dico
Omicron SARS-CoV-2 antiviral on poly(lactic acid) with nanostructured copper coating
Registro en:
0169-4332
623
10.1016/j.apsusc.2023.157015
0000-0002-6481-0155
83.7
93
Autor
SILVA, DANIEL J. da
DURAN, ADRIANA
FONSECA, FERNANDO L.A.
PARRA, DUCLERC F.
BUENO, RODRIGO F.
ROSA, DERVAL S.
Resumen
Surface modification corresponds to a set of viable technological approaches to introduce antimicrobial properties
in materials that do not have such characteristics. Antimicrobial materials are important to prevent the
proliferation of microorganisms and minimize the transmission of diseases caused by pathogens. Herein, poly
(lactic acid) (PLA) was decorated with nanocones through copper sputtering followed by a plasma etching.
Antiviral assays by Quantitative Reverse Transcription-Polymerase Chain Reaction (RT-qPCR) show that nanostructured
Cu-coated PLA has high antiviral activity against Omicron SARS-CoV-2, showing a relative reduction
in the amplified RNA (78.8 ?? 3.9 %). Atomic Force Microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS),
and wear-resistance tests show that 20 wear cycles disrupt the surface nanocone patterns and significantly reduce
the Cu content at the surface of the nanostructured Cu-coated PLA, leading to total loss of the antiviral properties
of nanostructured PLA against Omicron SARS-CoV-2. Conselho Nacional de Desenvolvimento Cient??fico e Tecnol??gico (CNPq) Coordena????o de Aperfei??oamento de Pessoal de N??vel Superior (CAPES) CNPq: 305819/2017???8; 402432/2020???7 CAPES: 88881.504639/2020???01