Dissertação
Problemas elípticos semilineares com potenciais singulares e ou não singulares
Elliptics semilineares problems with singular potentials or not singular
Registro en:
MARCIAL, Marcos Roberto. Elliptics semilineares problems with singular potentials or not singular. 2010. 61 f. Dissertação (Mestrado em Álgebra; Análise; Geometria e Topologia; Matemática Aplicada) - Universidade Federal de Viçosa, Viçosa, 2010.
Autor
Marcial, Marcos Roberto
Institución
Resumen
Neste trabalho, estudamos duas classes de problemas elípticos modelado em domínios ilimitados. Primeiro trabalhamos com o problema elíptico semilinear
-Δu = f(u) em IRN ; u Є H1(IRN ); u ≠ 0;
onde assumiremos que f : IR - IR é uma função contínua e ímpar. Provamos a existência de uma solução radial positiva, este resultado é devido a Berestycki- Lions [2]. Em segundo lugar, tratamos o problema
-Δu + V (/‌x/‌)u = f(u), u Є D1,2 (IRN ; IR);
onde o potencial V > 0 é uma função mensurável e singular na origem. Provamos a existência de solução radial positiva. No caso onde f é ímpar, mostramos que o problema tem um número infinito de soluções radiais. Resultados de não existência para potenciais particulares também serão tratados. Estes resultados são devido a Badiale-Rolando [1]. In this work we studed two classes of elliptic problems modeled in a bounded domains. First of all we deal with the semilinear elliptic problem
-Δu = f(u) em IRN ; u Є H1(IRN ); u ≠ 0;
where we always assume that f : IR - IR is an odd and continuous functions. We proved the existence of positive radial solution wich is result due to Berestycki-Lions [2]. Secondly, treated the problem
-Δu + V (/‌x/‌)u = f(u), u Є D1,2 (IRN ; IR);
where the potencial V > 0 is mensurable and singular at the origin. We proved the existence of positive radial solutions. If f odd, we showed that the problem has in nitely many radial solutions. Nonexistence results for one particular potencials and nonlinearities are also given. These results are due to Badiale-Rolando [1]. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior