Artigo
Bayesian inference for two-parameter gamma distribution assuming different noninformative priors
Registro en:
Revista Colombiana de Estadistica. Bogota Dc: Univ Nac Colombia, Dept Estadistica, v. 36, n. 2, p. 321-338, 2013.
0120-1751
WOS:000331380600009
WOS000331380600009.pdf
1621269552366697
0000-0002-2445-0407
Autor
Moala, Fernando Antonio [UNESP]
Ramos, Pedro Luiz [UNESP]
Achcar, Jorge Alberto
Resumen
In this paper distinct prior distributions are derived in a Bayesian inference of the two-parameters Gamma distribution. Noniformative priors, such as Jeffreys, reference, MDIP, Tibshirani and an innovative prior based on the copula approach are investigated. We show that the maximal data information prior provides in an improper posterior density and that the different choices of the parameter of interest lead to different reference priors in this case. Based on the simulated data sets, the Bayesian estimates and credible intervals for the unknown parameters are computed and the performance of the prior distributions are evaluated. The Bayesian analysis is conducted using the Markov Chain Monte Carlo (MCMC) methods to generate samples from the posterior distributions under the above priors. Univ Estadual Paulista, Fac Ciencia & Tecnol, Dept Estadist, Presidente Prudente, Brazil Univ Sao Paulo, Fac Med Ribeirao Preto, Dept Social Med, BR-14049 Ribeirao Preto, Brazil Univ Estadual Paulista, Fac Ciencia & Tecnol, Dept Estadist, Presidente Prudente, Brazil