Pseudo asymptotic solutions of fractional order semilinear equations
Fecha
2013Registro en:
Edgardo, A.-P. , Lizama, C. Pseudo asymptotic solutions of fractional order semilinear equations
(2013) Banach Journal of Mathematical Analysis, 7 (2), pp. 42-52.
DOI: 10.15352/bjma/1363784222
10.15352/bjma/1363784222
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
Autor
Alvarez-Pardo, Edgardo
Lizama, Carlos
Resumen
Using a generalization of the semigroup theory of linear operators, we prove existence and uniqueness of mild solutions for the semilinear fractional order differential equation [mathematical equation] with the property that the solution can be written as u = f+h where f belongs to the space of periodic (resp. almost periodic, compact almost automorphic, almost automorphic) functions and h belongs to the space [mathematical equation]. Moreover, this decomposition is unique.