dc.creatorAlvarez-Pardo, Edgardo
dc.creatorLizama, Carlos
dc.date.accessioned2023-07-19T21:19:13Z
dc.date.accessioned2023-09-06T15:55:01Z
dc.date.available2023-07-19T21:19:13Z
dc.date.available2023-09-06T15:55:01Z
dc.date.created2023-07-19T21:19:13Z
dc.date.issued2013
dc.identifierEdgardo, A.-P. , Lizama, C. Pseudo asymptotic solutions of fractional order semilinear equations (2013) Banach Journal of Mathematical Analysis, 7 (2), pp. 42-52. DOI: 10.15352/bjma/1363784222
dc.identifierhttps://hdl.handle.net/20.500.12585/12196
dc.identifier10.15352/bjma/1363784222
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio Universidad Tecnológica de Bolívar
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8683644
dc.description.abstractUsing a generalization of the semigroup theory of linear operators, we prove existence and uniqueness of mild solutions for the semilinear fractional order differential equation [mathematical equation] with the property that the solution can be written as u = f+h where f belongs to the space of periodic (resp. almost periodic, compact almost automorphic, almost automorphic) functions and h belongs to the space [mathematical equation]. Moreover, this decomposition is unique.
dc.languageeng
dc.publisherCartagena de Indias
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.sourceBanach Journal of Mathematical Analysis - vol. 7 No. 2 (2013)
dc.titlePseudo asymptotic solutions of fractional order semilinear equations


Este ítem pertenece a la siguiente institución