Tese
Papel do estresse oxidativo na fisiopatologia da fenilcetonúria
Autor
Sitta, Angela
Resumen
A fenilcetonúria é um erro inato do metabolismo de aminoácidos, causada pela deficiência severa ou ausência na atividade da fenilalanina hidroxilase, enzima que catalisa a hidroxilação da fenilalanina em tirosina na presença do cofator tetra-hidrobiopterina. Como consequência, ocorre o acúmulo da fenilalanina e seus metabólitos nos tecidos e nos líquidos biológicos dos pacientes afetados. O tratamento para a fenilcetonúria consiste em uma dieta restrita em fenilalanina e proteínas, suplementada com uma fórmula especial, contendo aminoácidos (exceto a fenilalanina) e micronutrientes. A principal característica clínica dos pacientes fenilcetonúricos não tratados é o retardo mental e outras alterações neurológicas, cuja base bioquímica é ainda pouco compreendida. Entretanto, nos últimos anos evidências indicam que o estresse oxidativo está envolvido na fisiopatologia da doença. Em estudos prévios, demonstramos que pacientes fenilcetonúricos diagnosticados tardiamente apresentavam aumento na peroxidação lipídica e redução de antioxidantes no momento do diagnóstico e também durante o tratamento, e que esses parâmetros não estavam diretamente relacionados com os níveis sanguíneos de fenilalanina. O objetivo deste trabalho foi o de investigar o papel do dano oxidativo e também das defesas antioxidantes na patogênese da fenilcetonúria. Foi demonstrado que pacientes fenilcetonúricos tratados apresentaram maior dano ao DNA, medido através do ensaio cometa, em comparação aos controles, e que este dano estava relacionado aos níveis sanguíneos elevados de fenilalanina. Neste particular, testes in vitro revelaram um efeito dose-dependente da fenilalanina sobre o dano ao DNA, reforçando os achados in vivo e indicando que a fenilalanina foi responsável por esse dano. Também verificamos que os pacientes fenilcetonúricos com diagnóstico tardio apresentaram maior oxidação a lipídios (determinado através da técnica das espécies reativas ao ácido tiobarbitúrico) e a proteínas (medido através do conteúdo de sulfidrilas e carbonilas) em comparação aos pacientes diagnosticados no período neonatal e aos controles. Portanto, o diagnóstico precoce, além de prevenir o retardo mental, como já descrito na literatura científica, também previne o dano oxidativo a biomoléculas. Por outro lado, foi observada uma redução nas concentrações de antioxidantes não enzimáticos (níveis de glutationa e reatividade antioxidante total) e na atividade da enzima antioxidante glutationa peroxidase em ambos os grupos de pacientes. A diminuição nos antioxidantes é comum em pacientes fenilcetonúricos, sendo atribuída principalmente à dieta restrita. Neste trabalho também verificamos que os pacientes que aderiam estritamente à dieta recomendada apresentavam redução nos níveis sanguíneos de L-carnitina, um composto com ação antioxidante. Além disso, os níveis de L-carnitina nesses pacientes mostraram uma correlação negativa significativa com a lipoperoxidação (medida pelas espécies reativas ao ácido tiobarbitúrico) e uma correlação positiva significativa com a reatividade antioxidante total. Os dados sugerem que a deficiência em L-carnitina está relacionada com o estresse oxidativo em pacientes fenilcetonúricos e, portanto, sua suplementação deva ser considerada como uma terapia adjuvante. De fato, a suplementação com L-carnitina e selênio (outro composto antioxidante deficiente em pacientes fenilcetonúricos) foi capaz de corrigir a oxidação a lipídios e proteínas (medida pelas espécies reativas ao ácido tiobarbitúrico e pelo conteúdo de sulfidrilas, respectivamente), além de normalizar a atividade da enzima glutationa peroxidase. Adicionalmente, foi verificada uma correlação negativa significativa entre a peroxidação lipídica e os níveis sanguíneos de Lcarnitina, assim como uma correlação positiva significativa entre a atividade da glutationa peroxidase e a concentração sanguínea de selênio. Em conjunto, nossos resultados sugerem que o estresse oxidativo está envolvido na patogênese da fenilcetonúria. Considerando que nossos resultados possam ser extrapolados para o cérebro, que possui menos defesas antioxidantes e vários fatores que aumentam a produção de radicais livres, pode ser proposto que o dano oxidativo contribui, pelo menos em parte, com a disfunção neurológica na fenilcetonúria, e, portanto, que a administração dos antioxidantes deficientes nesta patologia deva ser considerada na terapia da doença. Phenylketonuria is an inborn error of amino acid metabolism, caused by severe deficiency or absence of phenylalanine hydroxylase activity, enzyme that catalyzes the hydroxylation of phenylalanine to tyrosine in the presence of the cofactor tetrahydrobiopterin. As consequence, the accumulation of phenylalanine and its metabolites in tissues and biologic fluids of affected patients occurs. The treatment for phenylketonuria consists in a phenylalanine and protein-restricted diet, supplemented with a special formula containing amino acids (except phenylalanine) and micronutrients. The main clinical characterization of untreated phenylketonuric patients is mental retardation and other neurological features, whose biochemical basis is poorly understood. However, in recent years evidences indicate that oxidative stress is involved in the pathophysiology of the disease. In previous studies it was demonstrated that phenylketonuric patients late diagnosed presented increased lipid peroxidation and reduced antioxidants at the moment of diagnosis and also during the treatment, and that these parameters were not directly related to the phenylalanine blood levels. The objective of this work was to investigate the role of the oxidative damage and of antioxidant defenses on pathogenesis of phenylketonuria. It was demonstrated that phenylketonuric patients under treatment presented increased DNA damage, measured by the comet assay, compared to controls, which was related to phenylalanine blood levels. In this particular, in vitro tests revealed a dose-dependent effect of phenylalanine on DNA damage, reinforcing in vivo findings indicating that the phenylalanine was responsible for this damage. We also verified that phenylketonuric patients late diagnosed presented increased lipid (determined by thiobarbituric acid-reactive species) and protein oxidation (measured by sulphydryl and carbonyl groups) when compared to patients diagnosed in the neonatal period and to controls. Therefore, early diagnosis besides to prevent mental retardation, as described in the scientific literature, also prevents oxidative damage to biomolecules. On the other hand, it was observed a reduction in the concentration of non-enzymatic antioxidants (glutathione levels and total antioxidant reactivity) as well as in the activity of glutathione peroxidase enzyme in both groups of patients. The reduction in antioxidants is common in phenylketonuric patients being mainly attributed to the restricted diet. In this work, we also verified that patients who strictly adhered to the recommended diet present reduction in blood L-carnitine levels, a compound with an antioxidant action. Also, the levels of L-carnitine in these patients showed a significant negative correlation with lipid peroxidation (measured by thiobarbituric acid-reactive species) and a significant positive correlation with the total antioxidant reactivity. This suggests that L-carnitine deficiency is related to oxidative stress in phenylketonuric patients and therefore the supplementation should be considered as an adjuvant therapy. In fact, the supplementation with L-carnitine and selenium (other antioxidant compound deficient in phenylketonuric patients) was capable to correct the lipid and protein oxidation (measured by thiobarbituric acid-reactive species and sulphydryl content, respectively) besides to normalize the glutathione peroxidase activity. In addiction, it was verified a significant inverse correlation between lipid peroxidation and L-carnitine blood levels as well as a significant positive correlation between glutathione peroxidase activity and blood selenium concentration. Taken these results together, our results suggest that oxidative stress is involved in the pathogenesis of phenylketonuria. Considering that our results may be extrapolated to the brain, which has less antioxidant defenses and several other factors that increase the production of free radicals, it may be propose that the oxidative damage contributes, at least in part, to the neurological dysfunction in phenylketonuria and, therefore, the administration of deficient antioxidants in this pathology should be considered in the therapy of the disease.