info:eu-repo/semantics/article
Leukemia identification from bone marrow cells images using a machine vision and data mining strategy
Autor
Jesús Antonio González Bernal
Ivan Olmos Pineda
Leopoldo Altamirano Robles
BLANCA AURORA MORALES GONZALEZ
CAROLINA RETA CASTRO
MARTHA CORAL GALINDO DOMINGUEZ
Resumen
The morphological analysis of medical images to support medical diagnosis is an important research area. This is the case of leukemia identification from bone marrow smears in which cells morphology is studied in order to classify the disease into its main family and subtype, so that a proper treatment can be indicated to the patient. In this paper we present a method to identify leukemia from bone marrow cells images using a combined machine vision and data mining strategy. Our process starts with a segmentation method to obtain leukemia cells and extract from them descriptive characteristics (geometrical, texture, statistical) and eigenvalues. We use these attributes to feed machine learning algorithms that learn to classify acute leukemia families and subtypes according to the FAB system. We show how the combination of descriptive features and eigenvalues helps to improve classification accuracy. Our method achieved accuracy above 95.5% to distinguish between the acute myeloblastic and lymphoblastic leukemia families and accuracy of 90% (and above) among five leukemia subtypes (after the acute leukemia families classification).
Materias
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Compendio de innovaciones socioambientales en la frontera sur de México
Adriana Quiroga -
Caminar el cafetal: perspectivas socioambientales del café y su gente
Eduardo Bello Baltazar; Lorena Soto_Pinto; Graciela Huerta_Palacios; Jaime Gomez -
Material de empaque para biofiltración con base en poliuretano modificado con almidón, metodos para la manufactura del mismo y sistema de biofiltración
OLGA BRIGIDA GUTIERREZ ACOSTA; VLADIMIR ALONSO ESCOBAR BARRIOS; SONIA LORENA ARRIAGA GARCIA