dc.creatorJesús Antonio González Bernal
dc.creatorIvan Olmos Pineda
dc.creatorLeopoldo Altamirano Robles
dc.creatorBLANCA AURORA MORALES GONZALEZ
dc.creatorCAROLINA RETA CASTRO
dc.creatorMARTHA CORAL GALINDO DOMINGUEZ
dc.date2011
dc.date.accessioned2023-07-25T16:23:59Z
dc.date.available2023-07-25T16:23:59Z
dc.identifierhttp://inaoe.repositorioinstitucional.mx/jspui/handle/1009/1603
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7806797
dc.descriptionThe morphological analysis of medical images to support medical diagnosis is an important research area. This is the case of leukemia identification from bone marrow smears in which cells morphology is studied in order to classify the disease into its main family and subtype, so that a proper treatment can be indicated to the patient. In this paper we present a method to identify leukemia from bone marrow cells images using a combined machine vision and data mining strategy. Our process starts with a segmentation method to obtain leukemia cells and extract from them descriptive characteristics (geometrical, texture, statistical) and eigenvalues. We use these attributes to feed machine learning algorithms that learn to classify acute leukemia families and subtypes according to the FAB system. We show how the combination of descriptive features and eigenvalues helps to improve classification accuracy. Our method achieved accuracy above 95.5% to distinguish between the acute myeloblastic and lymphoblastic leukemia families and accuracy of 90% (and above) among five leukemia subtypes (after the acute leukemia families classification).
dc.formatapplication/pdf
dc.languageeng
dc.publisherIOS Press Content Library
dc.relationcitation:Gonzalez-Bernal J.A., et al., (2011). Leukemia identification from bone marrow cells images using a machine vision and data mining strategy, Intelligent Data Analysis, Vol. 15, (3): 443-462
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectinfo:eu-repo/classification/Acute leukemia classification/Acute leukemia classification
dc.subjectinfo:eu-repo/classification/Cells images/Cells images
dc.subjectinfo:eu-repo/classification/Data mining/Data mining
dc.subjectinfo:eu-repo/classification/Machine vision/Machine vision
dc.subjectinfo:eu-repo/classification/Feature extraction/Feature extraction
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectinfo:eu-repo/classification/cti/12
dc.subjectinfo:eu-repo/classification/cti/1203
dc.subjectinfo:eu-repo/classification/cti/1203
dc.titleLeukemia identification from bone marrow cells images using a machine vision and data mining strategy
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.audiencestudents
dc.audienceresearchers
dc.audiencegeneralPublic


Este ítem pertenece a la siguiente institución