info:eu-repo/semantics/article
On Yamabe constants of Riemannian products
Autor
JIMMY PETEAN HUMEN
Institución
Resumen
For a closed Riemannian manifold (Mm, g) of constant positive
scalar curvature and any other closed Riemannian manifold
(Nn, h), we show that the limit of the Yamabe constants of the
Riemannian products (M × N, g + rh) as r goes to infinity is equal
to the Yamabe constant of (Mm × Rn, [g + gE ]) and is strictly less
than the Yamabe invariant of Sm+n provided n ≥ 2. We then consider
the minimum of the Yamabe functional restricted to functions
of the second variable and we compute the limit in terms of the
best constants of the Gagliardo–Nirenberg inequalities.
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Compendio de innovaciones socioambientales en la frontera sur de México
Adriana Quiroga -
Caminar el cafetal: perspectivas socioambientales del café y su gente
Eduardo Bello Baltazar; Lorena Soto_Pinto; Graciela Huerta_Palacios; Jaime Gomez -
Cambio social y agrícola en territorios campesinos. Respuestas locales al régimen neoliberal en la frontera sur de México
Luis Enrique García Barrios; Eduardo Bello Baltazar; Manuel Roberto Parra Vázquez