dc.creatorJIMMY PETEAN HUMEN
dc.date2008
dc.date.accessioned2023-07-21T15:46:39Z
dc.date.available2023-07-21T15:46:39Z
dc.identifierhttp://cimat.repositorioinstitucional.mx/jspui/handle/1008/949
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7729489
dc.descriptionFor a closed Riemannian manifold (Mm, g) of constant positive scalar curvature and any other closed Riemannian manifold (Nn, h), we show that the limit of the Yamabe constants of the Riemannian products (M × N, g + rh) as r goes to infinity is equal to the Yamabe constant of (Mm × Rn, [g + gE ]) and is strictly less than the Yamabe invariant of Sm+n provided n ≥ 2. We then consider the minimum of the Yamabe functional restricted to functions of the second variable and we compute the limit in terms of the best constants of the Gagliardo–Nirenberg inequalities.
dc.formatapplication/pdf
dc.languageeng
dc.publisherInternational Press
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0
dc.subjectinfo:eu-repo/classification/MSC/Variedades Riemanianas
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectinfo:eu-repo/classification/cti/12
dc.subjectinfo:eu-repo/classification/cti/1204
dc.subjectinfo:eu-repo/classification/cti/120411
dc.subjectinfo:eu-repo/classification/cti/120411
dc.titleOn Yamabe constants of Riemannian products
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.audienceresearchers


Este ítem pertenece a la siguiente institución