dc.creator | JIMMY PETEAN HUMEN | |
dc.date | 2008 | |
dc.date.accessioned | 2023-07-21T15:46:39Z | |
dc.date.available | 2023-07-21T15:46:39Z | |
dc.identifier | http://cimat.repositorioinstitucional.mx/jspui/handle/1008/949 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/7729489 | |
dc.description | For a closed Riemannian manifold (Mm, g) of constant positive
scalar curvature and any other closed Riemannian manifold
(Nn, h), we show that the limit of the Yamabe constants of the
Riemannian products (M × N, g + rh) as r goes to infinity is equal
to the Yamabe constant of (Mm × Rn, [g + gE ]) and is strictly less
than the Yamabe invariant of Sm+n provided n ≥ 2. We then consider
the minimum of the Yamabe functional restricted to functions
of the second variable and we compute the limit in terms of the
best constants of the Gagliardo–Nirenberg inequalities. | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | International Press | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0 | |
dc.subject | info:eu-repo/classification/MSC/Variedades Riemanianas | |
dc.subject | info:eu-repo/classification/cti/1 | |
dc.subject | info:eu-repo/classification/cti/12 | |
dc.subject | info:eu-repo/classification/cti/1204 | |
dc.subject | info:eu-repo/classification/cti/120411 | |
dc.subject | info:eu-repo/classification/cti/120411 | |
dc.title | On Yamabe constants of Riemannian products | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.audience | researchers | |