info:eu-repo/semantics/report
Zonal Polynomials of Positive Semidefinitive Matrix Argument
Autor
JOSE ANTONIO DIAZ GARCIA
Institución
Resumen
By using the linear structure theory of Magnus (12), this work proposes an alter-
native way to James (11) for obtaining the Laplace-Beltrami operator, who has the
zonal polynomials of positive definite matrix argument as eigenfunctions, in partic-
ular, an explicit expression for the matrix G(v(X)), which appears in the metric
differential form (ds)2=dv0(X)G(v(X))dv (X), is obtained; also, the invariance
f (ds)2 under congruence transformations is proved. Explicit forms for (ds)2 and G(v(X)) are also shown under the spectral decomposition X=HY H0.
In a newapproach -apart from the classical theory of James (11)- a differential metric de-
pending on the Moore-Penrose inverse is proposed for the space of m£m positive
semidefinite matrices. As in the definite case, the Laplace-Beltrami operator for
the calculation of zonal polynomials of positive semidefinite matrix argument is de-
rived. In a parallel way the invariance of (ds)2 is shown and explicit expressions
for the metric and the matrixG (¢) are obtained in terms of X and its spectral decomposition. Finally, an efficient computational method for calculating the zonal polynomials of positive semidefinite matrices are preseted.
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Compendio de innovaciones socioambientales en la frontera sur de México
Adriana Quiroga -
Caminar el cafetal: perspectivas socioambientales del café y su gente
Eduardo Bello Baltazar; Lorena Soto_Pinto; Graciela Huerta_Palacios; Jaime Gomez -
Cambio social y agrícola en territorios campesinos. Respuestas locales al régimen neoliberal en la frontera sur de México
Luis Enrique García Barrios; Eduardo Bello Baltazar; Manuel Roberto Parra Vázquez