dc.creatorJOSE ANTONIO DIAZ GARCIA
dc.date2004-07-05
dc.date.accessioned2023-07-21T15:46:16Z
dc.date.available2023-07-21T15:46:16Z
dc.identifierhttp://cimat.repositorioinstitucional.mx/jspui/handle/1008/684
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7729229
dc.descriptionBy using the linear structure theory of Magnus (12), this work proposes an alter- native way to James (11) for obtaining the Laplace-Beltrami operator, who has the zonal polynomials of positive definite matrix argument as eigenfunctions, in partic- ular, an explicit expression for the matrix G(v(X)), which appears in the metric differential form (ds)2=dv0(X)G(v(X))dv (X), is obtained; also, the invariance f (ds)2 under congruence transformations is proved. Explicit forms for (ds)2 and G(v(X)) are also shown under the spectral decomposition X=HY H0. In a newapproach -apart from the classical theory of James (11)- a differential metric de- pending on the Moore-Penrose inverse is proposed for the space of m£m positive semidefinite matrices. As in the definite case, the Laplace-Beltrami operator for the calculation of zonal polynomials of positive semidefinite matrix argument is de- rived. In a parallel way the invariance of (ds)2 is shown and explicit expressions for the metric and the matrixG (¢) are obtained in terms of X and its spectral decomposition. Finally, an efficient computational method for calculating the zonal polynomials of positive semidefinite matrices are preseted.
dc.formatapplication/pdf
dc.languageeng
dc.publisherCentro de Investigación en Matemáticas AC
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0
dc.subjectinfo:eu-repo/classification/MSC/Análisis Multivariado
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectinfo:eu-repo/classification/cti/12
dc.subjectinfo:eu-repo/classification/cti/1209
dc.subjectinfo:eu-repo/classification/cti/120909
dc.subjectinfo:eu-repo/classification/cti/120909
dc.titleZonal Polynomials of Positive Semidefinitive Matrix Argument
dc.typeinfo:eu-repo/semantics/report
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.audienceresearchers


Este ítem pertenece a la siguiente institución