info:eu-repo/semantics/report
Dendriform algebras and Rota-baxter operators revisited in several directions
Autor
Raul Felipe
Institución
Resumen
The main purpose of this article is to move the study of dendriform
algebras and Rota-Baxter operators to a nonassociative setting beyond
the Lie algebras. We show how to associate structures of dendriform type
to alternative and
exible algebras and characterize the Rota-Baxter op-
erators corresponding to them, in order to extend some results that have
appeared in the literature for the associative case. These objects are stud-
ied in some detail. Also, we show that the usual version of Rota-Baxter
operators acts on Leibniz algebras in the same form that they act on Lie
algebras and in particular can be used into Leibniz-admissible algebras.
As a consequence we arrive to the notion of admissible dendriform al-
gebra. Additionally, we propose the concept of generalized dendriform
algebra and describe a connection of it with the left-symmetric dialgebras
recently introduced by the author.
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Compendio de innovaciones socioambientales en la frontera sur de México
Adriana Quiroga -
Caminar el cafetal: perspectivas socioambientales del café y su gente
Eduardo Bello Baltazar; Lorena Soto_Pinto; Graciela Huerta_Palacios; Jaime Gomez -
Cambio social y agrícola en territorios campesinos. Respuestas locales al régimen neoliberal en la frontera sur de México
Luis Enrique García Barrios; Eduardo Bello Baltazar; Manuel Roberto Parra Vázquez