dc.creatorRaul Felipe
dc.date2013-07-29
dc.date.accessioned2023-07-21T15:46:06Z
dc.date.available2023-07-21T15:46:06Z
dc.identifierhttp://cimat.repositorioinstitucional.mx/jspui/handle/1008/590
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7729136
dc.descriptionThe main purpose of this article is to move the study of dendriform algebras and Rota-Baxter operators to a nonassociative setting beyond the Lie algebras. We show how to associate structures of dendriform type to alternative and exible algebras and characterize the Rota-Baxter op- erators corresponding to them, in order to extend some results that have appeared in the literature for the associative case. These objects are stud- ied in some detail. Also, we show that the usual version of Rota-Baxter operators acts on Leibniz algebras in the same form that they act on Lie algebras and in particular can be used into Leibniz-admissible algebras. As a consequence we arrive to the notion of admissible dendriform al- gebra. Additionally, we propose the concept of generalized dendriform algebra and describe a connection of it with the left-symmetric dialgebras recently introduced by the author.
dc.formatapplication/pdf
dc.languageeng
dc.publisherCentro de Investigación en Matemáticas AC
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0
dc.subjectinfo:eu-repo/classification/MSC/Algebras Dendriform
dc.subjectinfo:eu-repo/classification/MSC/Algebras de Leibniz
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectinfo:eu-repo/classification/cti/12
dc.subjectinfo:eu-repo/classification/cti/1201
dc.subjectinfo:eu-repo/classification/cti/120199
dc.subjectinfo:eu-repo/classification/cti/120199
dc.titleDendriform algebras and Rota-baxter operators revisited in several directions
dc.typeinfo:eu-repo/semantics/report
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.audienceresearchers


Este ítem pertenece a la siguiente institución