Tesis de Maestría / master Thesis
Synthesis and obtention of CaSiO3 and WO3 ceramic particles as reinforcing fillers of Poly(vinyl alcohol)/Gelatin hydrogels for cartilage regeneration
Fecha
2022-06-01Registro en:
1078827
Autor
ORTEGA LARA, WENDY DE LOURDES; 95211
Catzim Ríos, Kevin Stalin
Institución
Resumen
Cartilage wear is a problem that affects a large percentage of the population and has gained relevance in recent years. However, current treatments do not present optimal results that favor the quality of life of those affected. Research in this field has recently focused on the development of systems that promote tissue regeneration instead of replacing it.
In this work, the synthesis of CaSiO3 and WO3 ceramic nanoparticles was studied using chemical methods such as sol-gel and precipitation respectively, to later be used as reinforcement of hydrogels composed of poly(vinyl-alcohol)/Gelatin (PVA/Gel) for the improvement of hydrogel bioactivity within biological systems. For the CaSiO3 synthesis, a single pure crystalline phase was obtained, with average particle sizes between 40 and 150 nm. On the other hand, for the WO3 particles, average sizes of 130 nm were obtained. Both independent nanoparticle syntheses were characterized by XRD, SEM, FTIR, DLS and EDX.
Viability assays revealed that the hydrogel formulation lowers cell viability by at least 50% in fibroblasts (NIH) and osteoblasts (HFOB). However, silicon-rich particles were found to help improve viability, promoting cell proliferation. Finally, a new non-commercial printing system was developed for freeze-thaw crosslinked hydrogels, where the possibility of 3D printing the generated PVA/Gel formulation was verified.