Análisis y control de bifurcaciones estacionarias
Autor
BACA CARRASCO, DAVID; 234716
BACA CARRASCO, DAVID
Institución
Resumen
Tesis de maestría en ciencias matemáticas El control de bifurcaciones se refiere a la tarea de designar un control que pueda modificar las propiedades de la bifurcación de un sistema dado, así como alcanzar algún comportamiento deseable en la dinámica. Los objetivos típicos del control de bifurcaciones incluye el retrazo del inicio de una bifurcación inherente introduciendo una nueva bifurcación en un valor de parámetro deseado, cambiando el valor del parámetro en un punto de bifurcación existente, modificando la forma o el tipo de una bifurcación en cadena, estabilizando una solución bifurcada o rama, monitoreando la multiplicidad amplitud y/o frecuencia de algunos ciclos límite que emergen de bifurcaciones optimizando el funcionamiento del sistema cerca de un punto de bifurcación, o una combinación de alguno de estos objetivos. Ver [3], [4] y [5]. El control de bifurcaciones no sólo es importante en estos casos, también sugiere una estrategia efectiva para el control del caos puesto que bifurcación y caos son usualmente considerados "gemelos "; en particular, la bifurcación de duplicación de periodo es una ruta típica al caos en muchos sistemas dinámicos no-lineales. Ver [2]. Tanto control de caos como control de bifurcaciones sugieren una nueva tecnología que prometa tener un mejor impacto en muchas áreas, quizá no tan tradicionales, aplicaciones a la ingeniería en tiempo y energía crítica. Además de la enorme área de usos de control de caos, el control de bifurcaciones juega un papel crucial en el análisis dinámico y control de crisis de muchos sistemas complejos no-lineales. Los ejemplos más conocidos incluyen a circuitos de alto rendimiento, generación de oscilaciones, mezclas de material basadas en vibración, reacciones químicas, predicción y prevención de colapsos en sistemas de poder, diseño de osciladores y pruebas, análisis y modelado de sistemas biológicos (por ejemplo, el cerebro y el corazón), por nombrar sólo algunos. [6]. Universidad de Sonora. División de Ciencias Exactas y Naturales. Programa de Posgrado en Matemáticas, 2009.