es | en | pt | fr
    • Presentación
    • Países
    • Instituciones
    • Participa
        JavaScript is disabled for your browser. Some features of this site may not work without it.
        Ver ítem 
        •   Inicio
        • México
        • Universidades
        • Universidad de Sonora (México)
        • Ver ítem
        •   Inicio
        • México
        • Universidades
        • Universidad de Sonora (México)
        • Ver ítem

        The Concept of monodromy for linear problems and its applications

        Registro en:
        20592
        http://www.repositorioinstitucional.uson.mx/handle/unison/883
        https://repositorioslatinoamericanos.uchile.cl/handle/2250/7550966
        Autor
        AVENDAÑO CAMACHO, MISAEL; 234021
        AVENDAÑO CAMACHO, MISAEL
        Institución
        • Universidad de Sonora (México)
        Resumen
        Tesis de maestría en ciencias especialidad matemáticas
         
        The notion of a monodromy matrix (operator) naturally appears under the study of linear systems with periodic coefficients. This notion gives rise to the well known result [4, 17] on the reductibility of linear periodic systems (Floquet's theorem) wich says that the monodromy matrix contains the complete information about a given system. The goal of the present work is to develop an unified viewpoint of monodromy for linear systems on Lie algebras with quasi periodic and decreasing boundary conditions. The quasi-periodic case is a natural generalization of the periodic case, and the decreasing case can be interpreted as the “limiting” periodic case (the period tends to infinity). Such a class of linear problems arise in the integrability theory of nonlinear partial differential equations in the framework of the so-called inverse scattering method [8, 11] If a nonlinear partial differential equations can be represented as the consistence condition for two linear problems (called the L-A pair). Then the inverse scattering method allow us reconstruct a wide class of solutions of the nonlinear equations from the corresponding “spectral data”. This leads to the study of the zero curvature equation and Lax equation [8, 11]. The main point here is the study of the analytic properties of the monodromy matrix depending on a spectral parameter and then the time-evolution of the spectral data. As an application of the general concept of monodromy, we consider a class of linear problems associated with integrability of nonlinear schödinger equation (NLS equation) [8, 11].
         
        Universidad de Sonora. División de Ciencias Exactas y Naturales. Departamento de Matemáticas, 2008
         
        Materias
        ÁLGEBRA DE LIE
        QA608 .A94
        Geometría algebraica
        Curvas algebraicas

        Mostrar el registro completo del ítem


        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018
         

        EXPLORAR POR

        Instituciones
        Fecha2011 - 20202001 - 20101951 - 20001901 - 19501800 - 1900

        Explorar en Red de Repositorios

        Países >
        Tipo de documento >
        Fecha de publicación >
        Instituciones >

        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018