Articulo
Planar cell polarity-mediated induction of neural stem cell expansion during axolotl spinal cord regeneration
Registro en:
issn:2050-084X
Autor
Rodrigo Albors, Aida
Tazaki, Akira
Rost, Fabian
Nowoshilow, Sergej
Chara, Osvaldo
Tanaka, Ely M.
Institución
Resumen
Axolotls are uniquely able to mobilize neural stem cells to regenerate all missing regions of the spinal cord. How a neural stem cell under homeostasis converts after injury to a highly regenerative cell remains unknown. Here, we show that during regeneration, axolotl neural stem cells repress neurogenic genes and reactivate a transcriptional program similar to embryonic neuroepithelial cells. This dedifferentiation includes the acquisition of rapid cell cycles, the switch from neurogenic to proliferative divisions, and the re-expression of planar cell polarity (PCP) pathway components. We show that PCP induction is essential to reorient mitotic spindles along the anterior-posterior axis of elongation, and orthogonal to the cell apical-basal axis. Disruption of this property results in premature neurogenesis and halts regeneration. Our findings reveal a key role for PCP in coordinating the morphogenesis of spinal cord outgrowth with the switch from a homeostatic to a regenerative stem cell that restores missing tissue. Facultad de Ciencias Exactas Instituto de Física de Líquidos y Sistemas Biológicos