Conference Paper
Polyhydroxyalkanoate (PHA) biosynthesis from whey lactose
Fecha
2008Autor
Koller, M.
Atlic, A.
Gonzalez-Garcia, Y.
Kutschera, C.
Braunegg, G.
Institución
Resumen
The potential of three different microbial wild type strains as polyhydroxyalkanoate (PHA) producers from whey lactose is compared. Homopolyester and co-polyester biosynthesis was investigated by the archaeon Haloferax mediterranel and the eubacterial strains Pseudomonas hydrogenovora and Hydrogenophaga pseudofiava. H. mediterranei accumulated 50 wt.-% of poly-3-(hydroxybutyrate-co-6%-hydroxyvalerate) in cell dry mass from hydrolyzed whey without addition of 3-hydroxyvalerate (3HV) precursors (specific productivity qp: 2.9 mg/g h). Using P. hydrogenovora, the final percentage of poly-3-hydroxybutyrate (PHB) amounted to 12 wt.-% (qp: 0.03 g/g h); co-feeding of valeric acid resulted in the production of 12 Wt.-%. P-3(HB-co-21%-HV) (qp: 0.02 g/g h). With H. pseudoflava, it was possible to reach 40 wt.-% P-3 (HB-co-5%-HV) on not-hydrolyzed whey lactose plus valeric acid as 3HV precursor (qp: 9.1 mg/g h); on hydrolyzed whey lactose without addition of valeric acid, the strain produced 30 wt.-% of PHB (qp: 0.16 g/g h). The characterization of the isolated biopolyesters completes the study. Copyright 2008 WILEY-VCH Verlag GmbH & Co. KGaA.