conferenceObject
On the robustness of standalone referring expression generation algorithms using RDF data
Fecha
2016Autor
Duboué, Pablo Ariel
Domínguez, Martín Ariel
Estrella, Paula Susana
Institución
Resumen
A sub-task of Natural Language Generation (NLG) is the generation of referring expressions (REG). REG algorithms are expected to select attributes that unambiguously identify an entity with respect to a set of distractors. In previous work we have defined a methodology to evaluate REG algorithms using real life examples. In the present work, we evaluate REG algorithms using a dataset that contains alterations in the properties of referring entities. We found that naturally occurring ontological re-engineering can have a devastating impact in the performance of REG algorithms, with some more robust in the presence of these changes than others. The ultimate goal of this work is observing the behavior and estimating the performance of a series of REG algorithms as the entities in the data set evolve over time.