dc.contributorhttps://orcid.org/0000-0002-1815-0117
dc.creatorDuboué, Pablo Ariel
dc.creatorDomínguez, Martín Ariel
dc.creatorEstrella, Paula Susana
dc.date.accessioned2023-06-15T13:22:26Z
dc.date.accessioned2023-06-16T14:27:41Z
dc.date.available2023-06-15T13:22:26Z
dc.date.available2023-06-16T14:27:41Z
dc.date.created2023-06-15T13:22:26Z
dc.date.issued2016
dc.identifierhttp://hdl.handle.net/11086/547792
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6676638
dc.description.abstractA sub-task of Natural Language Generation (NLG) is the generation of referring expressions (REG). REG algorithms are expected to select attributes that unambiguously identify an entity with respect to a set of distractors. In previous work we have defined a methodology to evaluate REG algorithms using real life examples. In the present work, we evaluate REG algorithms using a dataset that contains alterations in the properties of referring entities. We found that naturally occurring ontological re-engineering can have a devastating impact in the performance of REG algorithms, with some more robust in the presence of these changes than others. The ultimate goal of this work is observing the behavior and estimating the performance of a series of REG algorithms as the entities in the data set evolve over time.
dc.languageeng
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.subjectReferring expressions
dc.subjectResource Description Framework
dc.subjectRDF data
dc.subjectNatural language generation
dc.titleOn the robustness of standalone referring expression generation algorithms using RDF data
dc.typeconferenceObject


Este ítem pertenece a la siguiente institución