Galectin-8 mediates fibrogenesis induced by cyclosporine in human gingival fibroblasts
dc.creator | Universidad San Sebastián | |
dc.creator | Universidad San Sebastián | |
dc.creator | Universidad San Sebastián | |
dc.creator | Universidad San Sebastián | |
dc.creator | Universidad San Sebastián | |
dc.creator | Universidad San Sebastián | |
dc.creator | Universidad San Sebastián | |
dc.creator | Universidad San Sebastián | |
dc.creator | Universidad San Sebastián | |
dc.creator | Smith, Patricio C. | |
dc.creator | Metz, Claudia | |
dc.creator | de la Peña, Adely | |
dc.creator | Oyanadel, Claudia | |
dc.creator | Avila, Patricio | |
dc.creator | Arancibia, Rodrigo | |
dc.creator | Vicuña, Lucas | |
dc.creator | Retamal, Claudio | |
dc.creator | Barake, Francisca | |
dc.creator | González, Alfonso | |
dc.creator | Soza, Andrea | |
dc.date.accessioned | 2023-05-24T04:54:06Z | |
dc.date.available | 2023-05-24T04:54:06Z | |
dc.date.created | 2023-05-24T04:54:06Z | |
dc.date.issued | 2020-10-01 | |
dc.identifier | 0022-3484 | |
dc.identifier | https://repositorio.uss.cl/handle/uss/6622 | |
dc.identifier | 10.1111/jre.12761 | |
dc.description.abstract | Background and Objective: During cyclosporine-induced gingival overgrowth, the homeostatic balance of gingival connective tissue is disrupted leading to fibrosis. Galectins are glycan-binding proteins that can modulate a variety of cellular processes including fibrosis in several organs. Here, we study the role of galectin-8 (Gal-8) in the response of gingival connective tissue cells to cyclosporine. Methods: We used human gingival fibroblasts and mouse NIH3T3 cells treated with recombinant Gal-8 and/or cyclosporine for analyzing specific mRNA and protein levels through immunoblot, real-time polymerase chain reaction, ELISA and immunofluorescence, pull-down with Gal-8-Sepharose for Gal-8-to-cell surface glycoprotein interactions, short hairpin RNA for Gal-8 silencing and Student's t test and ANOVA for statistical analysis. Results: Galectin-8 stimulated type I collagen and fibronectin protein levels and potentiated CTGF protein levels in TGF-β1-stimulated human gingival fibroblasts. Gal-8 interacted with α5β1-integrin and type II TGF-β receptor. Gal-8 stimulated fibronectin protein and mRNA levels, and this response was dependent on FAK activity but not Smad2/3 signaling. Cyclosporine and tumor necrosis factor alpha (TNF-α) increased Gal-8 protein levels. Finally, silencing of galectin-8 in NIH3T3 cells abolished cyclosporine-induced fibronectin protein levels. Conclusion: Taken together, these results reveal for the first time Gal-8 as a fibrogenic stimulus exerted through β1-integrin/FAK pathways in human gingival fibroblasts, which can be triggered by cyclosporine. Further studies should explore the involvement of Gal-8 in human gingival tissues and its role in drug-induced gingival overgrowth. | |
dc.language | eng | |
dc.relation | Journal of Periodontal Research | |
dc.title | Galectin-8 mediates fibrogenesis induced by cyclosporine in human gingival fibroblasts | |
dc.type | Artículo |