dc.creatorUniversidad San Sebastián
dc.creatorUniversidad San Sebastián
dc.creatorUniversidad San Sebastián
dc.creatorUniversidad San Sebastián
dc.creatorUniversidad San Sebastián
dc.creatorUniversidad San Sebastián
dc.creatorUniversidad San Sebastián
dc.creatorUniversidad San Sebastián
dc.creatorUniversidad San Sebastián
dc.creatorBarros, L. F.
dc.creatorRuminot, I.
dc.creatorSotelo-Hitschfeld, T.
dc.creatorLerchundi, R.
dc.creatorFernández-Moncada, I.
dc.date.accessioned2023-05-24T04:58:40Z
dc.date.available2023-05-24T04:58:40Z
dc.date.created2023-05-24T04:58:40Z
dc.date.issued2023-02-10
dc.identifier0066-4278
dc.identifierhttps://repositorio.uss.cl/handle/uss/7018
dc.identifier10.1146/annurev-physiol-021422-091035
dc.description.abstractInformation processing imposes urgent metabolic demands on neurons, which have negligible energy stores and restricted access to fuel. Here, we discuss metabolic recruitment, the tissue-level phenomenon whereby active neurons harvest resources from their surroundings. The primary event is the neuronal release of K+ that mirrors workload. Astrocytes sense K+ in exquisite fashion thanks to their unique coexpression of NBCe1 and α2β2 Na+/K+ ATPase, and within seconds switch to Crabtree metabolism, involving GLUT1, aerobic glycolysis, transient suppression of mitochondrial respiration, and lactate export. The lactate surge serves as a secondary recruiter by inhibiting glucose consumption in distant cells. Additional recruiters are glutamate, nitric oxide, and ammonium, which signal over different spatiotemporal domains. The net outcome of these events is that more glucose, lactate, and oxygen are made available. Metabolic recruitment works alongside neurovascular coupling and various averaging strategies to support the inordinate dynamic range of individual neurons.
dc.languageeng
dc.relationAnnual review of physiology
dc.titleMetabolic Recruitment in Brain Tissue
dc.typeArtículo


Este ítem pertenece a la siguiente institución