dc.creatorUniversidad San Sebastián
dc.creatorUniversidad San Sebastián
dc.creatorUniversidad San Sebastián
dc.creatorUniversidad San Sebastián
dc.creatorUniversidad San Sebastián
dc.creatorUniversidad San Sebastián
dc.creatorUniversidad San Sebastián
dc.creatorUniversidad San Sebastián
dc.creatorNúñez, Dariela
dc.creatorSerrano, Jon Ander
dc.creatorMancisidor, Aritz
dc.creatorElgueta, Elizabeth
dc.creatorVaraprasad, Kokkarachedu
dc.creatorOyarzún, Patricio
dc.creatorCáceres, Rodrigo
dc.creatorIde, Walther
dc.creatorRivas, Bernabé L.
dc.date.accessioned2023-05-24T04:59:35Z
dc.date.available2023-05-24T04:59:35Z
dc.date.created2023-05-24T04:59:35Z
dc.date.issued2019
dc.identifier2046-2069
dc.identifierhttps://repositorio.uss.cl/handle/uss/7099
dc.identifier10.1039/c9ra04198b
dc.description.abstractHydroxyapatite (HA) was synthesized by wet chemical precipitation, using clam shell (CS) waste as feedstock. SEM and TEM observation of the produced hydroxyapatite revealed the presence of rod-shaped nanocrystals, while XRD and EDS analyses confirmed the characteristic patterns of hydroxyapatite molecules. This material was subsequently employed as a sorbent for heavy metal removal from aqueous solutions, both in batch and column equilibrium procedures. In batch studies, higher sorption efficiencies were obtained at pH 5, with the highest adsorption capacities of 265, 64, and 55 mg g-1 for Pb(ii), Cd(ii), and Cu(ii), respectively. In addition, an adsorption capacity of 42.5 mg g-1 was determined using a CS-HA packed bed column fed with a solution of Pb(ii). Finally, the breakthrough curve was fitted with Thomas model in order to predict column behavior and scaling up.
dc.languageeng
dc.relationRSC Advances
dc.titleHeavy metal removal from aqueous systems using hydroxyapatite nanocrystals derived from clam shells
dc.typeArtículo


Este ítem pertenece a la siguiente institución