Article
Diagnosis of intracranial tumors via the selective CNN data modeling technique
Registro en:
2076-3417
Autor
Singh, Vinayak
Gourisaria, Mahendra Kumar
GM, Harshvardhan
Rautaray, Siddharth Swarup
Pandey, Manjusha
Sahni, Manoj
León Castro, Ernesto
Espinoza Audelo, Luis F.
Resumen
Artículo de publicación WOS - SCOPUS A brain tumor occurs in humans when a normal cell turns into an aberrant cell inside the brain. Primarily, there are two types of brain tumors in Homo sapiens: benign tumors and malignant tumors. In brain tumor diagnosis, magnetic resonance imaging (MRI) plays a vital role that requires high precision and accuracy for diagnosis, otherwise, a minor error can result in severe consequences. In this study, we implemented various configured convolutional neural network (CNN) paradigms on brain tumor MRI scans that depict whether a person is a brain tumor patient or not. This paper emphasizes objective function values (OFV) achieved by various CNN paradigms with the least validation cross-entropy loss (LVCEL), maximum validation accuracy (MVA), and training time (TT) in seconds, which can be used as a feasible tool for clinicians and the medical community to recognize tumor patients precisely. Experimentation and evaluation were based on a total of 2189 brain MRI scans, and the best architecture shows the highest accuracy of 0.8275, maximum objective function value of 1.84, and an area under the ROC (AUC-ROC) curve of 0.737 to accurately recognize and classify whether or not a person has a brain tumor.