dc.creatorSingh, Vinayak
dc.creatorGourisaria, Mahendra Kumar
dc.creatorGM, Harshvardhan
dc.creatorRautaray, Siddharth Swarup
dc.creatorPandey, Manjusha
dc.creatorSahni, Manoj
dc.creatorLeón Castro, Ernesto
dc.creatorEspinoza Audelo, Luis F.
dc.date2022-10-18T23:25:09Z
dc.date2022-10-18T23:25:09Z
dc.date2022
dc.identifierSingh, V., Gourisaria, M. K., GM, H., Rautaray, S. S., Pandey, M., Sahni, M., Leon-Castro, E., & Espinoza-Audelo, L. F. (2022). Diagnosis of Intracranial Tumors via the Selective CNN Data Modeling Technique. Applied Sciences, 12(6), 2900. https://doi.org/10.3390/app12062900
dc.identifier2076-3417
dc.identifierhttp://repositoriodigital.ucsc.cl/handle/25022009/3040
dc.descriptionArtículo de publicación WOS - SCOPUS
dc.descriptionA brain tumor occurs in humans when a normal cell turns into an aberrant cell inside the brain. Primarily, there are two types of brain tumors in Homo sapiens: benign tumors and malignant tumors. In brain tumor diagnosis, magnetic resonance imaging (MRI) plays a vital role that requires high precision and accuracy for diagnosis, otherwise, a minor error can result in severe consequences. In this study, we implemented various configured convolutional neural network (CNN) paradigms on brain tumor MRI scans that depict whether a person is a brain tumor patient or not. This paper emphasizes objective function values (OFV) achieved by various CNN paradigms with the least validation cross-entropy loss (LVCEL), maximum validation accuracy (MVA), and training time (TT) in seconds, which can be used as a feasible tool for clinicians and the medical community to recognize tumor patients precisely. Experimentation and evaluation were based on a total of 2189 brain MRI scans, and the best architecture shows the highest accuracy of 0.8275, maximum objective function value of 1.84, and an area under the ROC (AUC-ROC) curve of 0.737 to accurately recognize and classify whether or not a person has a brain tumor.
dc.languageen
dc.publisherMDPI
dc.subjectConvolutional neural network (CNN)
dc.subjectMachine learning (ML)
dc.subjectDeep learning
dc.subjectArtificial neural network (ANN)
dc.subjectBrain tumor
dc.subjectMedical imaging
dc.titleDiagnosis of intracranial tumors via the selective CNN data modeling technique
dc.typeArticle


Este ítem pertenece a la siguiente institución