Artículos de revistas
Larviculture of the painted river prawn Macrobrachium carcinus in different culture systems
Fecha
2021-02-01Registro en:
Aquacultural Engineering, v. 92.
0144-8609
10.1016/j.aquaeng.2020.102139
2-s2.0-85097346707
Autor
Instituto Agronômico de Pernambuco – IPA
Universidade Estadual de Maringá (UEM)
Universidade Federal Rural de Pernambuco – UFRPE
Universidade Estadual Paulista (Unesp)
UFRPE
Institución
Resumen
The objective of this study was to evaluate different hatchery systems used for the larviculture of the Macrobrachium carcinus based on survival, larval development and production of post-larvae. The experimental culture was carried out in three phases designated as Phase I (Zoea VI to VIII – ZVI – VIII), Phase II (Zoea VIII to X – ZVIII – X), and Phase III (Zoea X to PL – ZX – PL), with densities of 30, 27.5 and 25 larvae / L, respectively. The M. carcinus larvae (ZVI) were reared in four culture systems, two being open (Greenwater – GW and Clearwater – CW) and two being closed (Biofloc – BFT and Bio-filter – RAS), distributed in twelve 10 L plastic containers, filled with 20 ppt brackish water, equipped with constant aeration, and water circulated by air lift and heated with thermostat (∼30 °C). The GW treatment was maintained with Chlorophyceae algae in the density of 3–5 × 105 cells/mL. In the CW, the water was previously filtered through a 5 μm mesh screen, sterilized with 10 ppm active chlorine and, dechlorinated with vitamin C and subjected to aeration for 24 h. The BFT received water rich in bioflocs that was matured prior to the experiment and used molasses as a source of organic carbon. In the RAS, the culture water circulated through an external “Dry-Wet” biological filter. The feeding was carried out ad libitum four times daily, alternating a wet diet formula with a commercial diet, which was supplemented with newly hatched Artemia nauplii at a rate of 40–50 per larvae/day. Temperature, dissolved oxygen and pH were monitored daily and the salinity two times per week. Total ammonia, nitrite, nitrate, orthophosphate, alkalinity, total suspended solids, chlorophyll-a, COD and BOD were also analyzed. The best water quality (P < 0.05) was obtained in the RAS, with 0.49 (±0.38), 0.23 (±0.22), and 9.0 (±1.5) mg/L of TAN, NO2-N and NO3-N, respectively. In the GW, the nitrogen species showed high fluctuations and higher concentrations at 2.32 (±1.68), 3.53 (±3.53) and 18.2 (±12.9) mg / L of TAN, NO2-N and NO3-N, respectively. Considering the three phases (ZVI – PL), the overall survival was 0.03, 1.97, 2.23 and 17.32 % for the BFT, CW, GW and RAS, respectively. When considering the phases separately, the survival in Phase I (ZVI – VIII) was highest in the GW system at 58.7 % while the RAS was the highest in Phases II (ZVIII – X) and III (ZX – PL) at 70.6 % and 60.3 %, respectively. The BFT showed 8.4 (±3.5) PL/L, which was higher (P < 0.05) than that obtained in the RAS (2.8 ± 1.2 PL/L) and the GW (1.3 ± 1.1 PL/L) and similar to that obtained in the CW (5.6 ± 2.0 PL/L). Thus, the larviculture for the M. carcinus may be optimized by adopting a multiphase management strategy, which the intermediate larval stages (ZVI – IX) are reared in the GW system and the final stages (ZX – PL) are reared in the BFT system.