Artículos de revistas
On close to scalar families for fractional evolution equations: zero–one law
Fecha
2019-08-15Registro en:
Semigroup Forum, v. 99, n. 1, p. 140-152, 2019.
0037-1912
10.1007/s00233-019-10025-0
2-s2.0-85066018146
Autor
Universidade Estadual Paulista (Unesp)
Universidad de Santiago de Chile (Usach)
Institución
Resumen
For {Rα,β(t)}t≥0 being a strongly continuous (α, β) -resolvent family on a Banach space, we show that the assumption supt>0‖1tβ-1Eα,β(λtα)Rα,β(t)-I‖=:θ<1 yields that Rα , β(t) = tβ - 1Eα , β(λtα) for all t> 0 and λ≥ 0 , where Eα , β(s) denotes the Mittag–Leffler function with parameters α, β> 0. This implication is known as the zero–one law. In particular, we provide new insights on the structural properties of the theories of C-semigroups, strongly continuous cosine families, β-times integrated semigroups and α-resolvent families, among others. For β-times integrated semigroups, an example shows that in the sector {(α,β):0<α≤1;α≤β} the requirement θ< 1 is optimal: for θ= 1 the result is false.