dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidad de Santiago de Chile (Usach)
dc.date.accessioned2019-10-06T16:31:26Z
dc.date.accessioned2022-12-19T18:51:23Z
dc.date.available2019-10-06T16:31:26Z
dc.date.available2022-12-19T18:51:23Z
dc.date.created2019-10-06T16:31:26Z
dc.date.issued2019-08-15
dc.identifierSemigroup Forum, v. 99, n. 1, p. 140-152, 2019.
dc.identifier0037-1912
dc.identifierhttp://hdl.handle.net/11449/189151
dc.identifier10.1007/s00233-019-10025-0
dc.identifier2-s2.0-85066018146
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5370189
dc.description.abstractFor {Rα,β(t)}t≥0 being a strongly continuous (α, β) -resolvent family on a Banach space, we show that the assumption supt>0‖1tβ-1Eα,β(λtα)Rα,β(t)-I‖=:θ<1 yields that Rα , β(t) = tβ - 1Eα , β(λtα) for all t> 0 and λ≥ 0 , where Eα , β(s) denotes the Mittag–Leffler function with parameters α, β> 0. This implication is known as the zero–one law. In particular, we provide new insights on the structural properties of the theories of C-semigroups, strongly continuous cosine families, β-times integrated semigroups and α-resolvent families, among others. For β-times integrated semigroups, an example shows that in the sector {(α,β):0<α≤1;α≤β} the requirement θ< 1 is optimal: for θ= 1 the result is false.
dc.languageeng
dc.relationSemigroup Forum
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectC-semigroups
dc.subjectCosine families
dc.subjectOne parameter families of bounded operators
dc.subjectOne–zero law
dc.subjectα-resolvent families
dc.subjectβ-times integrated
dc.titleOn close to scalar families for fractional evolution equations: zero–one law
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución