Tesis
El teorema de reducción de singularidades para campos holomorfos n-dimensionales con singularidades absolutamente aisladas
Autor
Vásquez Serpa, Luis Javier
Vásquez Serpa, Luis Javier
Institución
Resumen
En el presente trabajo, considerar una foliación holomorfa singular por curvas definido en una variedad compleja de dimensión n y sea p una singularidad aislada (dicrítica o no). En dimensión n = 2, es conocido que después de un número finito de blowing-ups en los puntos singulares, la foliación Fz es transformada en una foliación F*z que posee un número finito de singularidades, todas ellas simples (Teorema de Seidenberg). Esto significa que si p* Є Sing(F*z}, entonces Fz es locamente generada por un campo vectorial holomorfo Z* que tiene parte lineal con autovalores 1 y λ, donde λ Q+ (Q+ es el conjunto de los números racionales positivos).
Las singularidades simples pueden ser pensadas como formas finales, ya que ellas son persistentes bajo nuevos blowing-ups.
En este trabajo se obtiene dos teoremas de reducción de singularidades (extensión del teorema de Seindenberg a dimensión n>3). El primer teorema consiste en que después de un número finito de blow-ups, la foliación Fz es transformada en una foliación F*z que posee un número finito de singularidades, todas ellas irreducibles. Esto significa que si p* Є Sing (F*z) entonces F*z es localmente generada por un campo vectorial holomorfo Z*, tal que su parte lineal de Z* posee por lo menos un autovalor no nulo. El segundo teorema consiste en una extensión del primer teorema de tal manera que F*z posee un número finito de singularidades, todas ellas simples. Tesis