info:eu-repo/semantics/article
Aggregate planning for probabilistic demand with internal and external storage
Aggregate planning for probabilistic demand with internal and external storage
Autor
Biazzi, Jorge Luiz
Institución
Resumen
This paper presents three approaches to support decision-making for production planning, sales and inventory problems. They work in a situation with: non-stationary probabilistic demand; production capacity in regular hours and overtime; shortage leads to lost sales; limited internal storage space; and ordering costs resulting from machine preparation are negligible. In the first approach, we consider the problem as linear and deterministic. In the second, safety inventories are used to fill a probabilistic demand, but the possibility of stockout is not considered. The third approach estimates shortage resulting from demand uncertainty. The last two approaches use iterative processes to re-estimate unit holding cost, which is the basis to calculate safety inventories in each period of the horizon. Using Microsoft Excel Solver, with linear programming and nonlinear search functions, a hypothetical example (but strongly based on real-life companies) and some scenarios permit concluding that developing more realistic and complex models may not provide significant benefits. This paper presents three approaches to support decision-making for production planning, sales and inventory problems. They work in a situation with: non-stationary probabilistic demand; production capacity in regular hours and overtime; shortage leads to lost sales; limited internal storage space; and ordering costs resulting from machine preparation are negligible. In the first approach, we consider the problem as linear and deterministic. In the second, safety inventories are used to fill a probabilistic demand, but the possibility of stockout is not considered. The third approach estimates shortage resulting from demand uncertainty. The last two approaches use iterative processes to re-estimate unit holding cost, which is the basis to calculate safety inventories in each period of the horizon. Using Microsoft Excel Solver, with linear programming and nonlinear search functions, a hypothetical example (but strongly based on real-life companies) permits concluding that developing more realistic and complex models may not provide significant benefits.