es | en | pt | fr
    • Presentación
    • Países
    • Instituciones
    • Participa
        JavaScript is disabled for your browser. Some features of this site may not work without it.
        Ver ítem 
        •   Inicio
        • Chile
        • Gobierno
        • ANID (Chile)
        • Ver ítem
        •   Inicio
        • Chile
        • Gobierno
        • ANID (Chile)
        • Ver ítem

        Solving combinatorial problems with continuous swarm intelligence algorithms using machine learning techniques to select binarization schemes

        Fecha
        2021
        Registro en:
        http://hdl.handle.net/10533/252951
        21191692
        https://repositorioslatinoamericanos.uchile.cl/handle/2250/4484206
        Autor
        Crawford, Broderick
        PONTIFICIA UNIVERSIDAD CATOLICA DE VALPARAISO
        Institución
        • ANID (Chile)
        Resumen
        Today, combinatorial problems in binary domains are more frequently encountered in industry, so solving them efficiently is a priority in both academic and industrial areas. To solve the biggest problems the Metaheuristics have stood out in the last time. Some Metaheuristics have versions that make them capable of operating in discrete search spaces. But in the case of continuous swarm intelligence Metaheuristics, it is necessary to adapt them to operate in discrete domains. To make this adaptation it is necessary to use a binarization scheme, so as to take advantage of the original movements of the Metaheuristics designed for continuous spaces. In this work we propose a selector of binarization schemes based on Machine Learning techniques, selecting based on Q-Learning/SARSA the binarization to be used in each iteration, observing the balance of exploration and exploitation. To demonstrate the performance of the proposal, different forms of reward will be evaluated, which will be checked in an exhaustive way through the respective statistical tests, all this implemented on four Metaheuristics of continuous intelligence of swarms which are Sine Cosine Algorithm, Harris Hawk Optimization, Whale Optimization Algorithm and Grey Wolf Optimizer. The different Metaheuristics of continuous swarm intelligence using classical binary schemes will be compared against their Q-Learning enhanced versions.
        Materias

        Mostrar el registro completo del ítem


        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018
         

        EXPLORAR POR

        Instituciones
        Fecha2011 - 20202001 - 20101951 - 20001901 - 19501800 - 1900

        Explorar en Red de Repositorios

        Países >
        Tipo de documento >
        Fecha de publicación >
        Instituciones >

        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018